Surgical Approach To Epilepsy In Children With Ineffective Anti-Epileptic Drugs
Keywords:
Drug-resistant epilepsy, Vagus nerve stimulation, Pediatric neurosurgeryAbstract
Drug-resistant epilepsy (DRE) affects 25% of all epileptic patients, and quality of life decreases in these patients due to their seizures. Early detection is crucial in order to establish potential treatment alternatives and determine if the patient is a surgical candidate. Neurosurgical treatment may improve seizures in children and adolescents with drug-resistant epilepsy, but additional data are needed from randomized trials. A total of 47 patients were identified; 10 treated with ASMs, 3 treated with ASMs + VNS, and 34 treated with ASMs + cranial epilepsy surgery. In this single-center trial, children and adolescents with drug-resistant epilepsy who had undergone different types of epilepsy surgery had a significantly higher rate of freedom from seizures and better scores with respect to behavior and quality of life than did those who continued medical therapy alone. The surgery resulted in expected neurological deficits related to the area of brain resection.
References
P. Kwan, A. Arzimanoglou, A.T. Berg, M.J. Brodie, W. Allen Hauser, G. Mathern, et al.
Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 51 (2010), pp. 1069-1077
Murray GJ. Global Comparative Assessments in the Health Sector: Disease Burden.Expenditure, Intervention Packages; 1994, Curr Neuropharmacol. 2018 Jan.
Kwan P and Brodie MJ. Early identification of refractory epilepsy. New England Journal of Medicine. 2000; 342(5):314-9.
https://aimj.researchcommons.org/cgi/viewcontent.cgi?article=1025&context=journal
Brodie MJ and Kwan P. Staged approach to epilepsy management. Neurology. 2002; 58(8):S2-8.
Löscher W., Luna-Tortós C., Römermann K., Fedrowitz M. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr. Pharm. Des. 2011;17(26):2808–2828. doi: 10.2174/138161211797440212. [http://dx.doi.org/10.2174/138161211797440212]. [PMID: 21827408].
Margineanu D.G., Klitgaard H. Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin. Drug Discov. 2009;4(1):23–32. doi: 10.1517/17460440802611729. [http://dx.doi.org/10.1517/ 17460440802611729]. [PMID: 23480334].
Salvamoser J.D., Avemary J., Luna-Munguia H., Pascher B., Getzinger T., Pieper T., Kudernatsch M., Kluger G., Potschka H. Glutamate-mediated down-regulation of the multidrug-resistance protein BCRP/ABCG2 in porcine and human brain capillaries. Mol. Pharm. 2015;12(6):2049–2060. doi: 10.1021/mp500841w. [http://dx.doi.org/ 10.1021/mp500841w]. [PMID: 25898179].
Remy S., Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006;129(Pt 1):18–35. doi: 10.1093/brain/awh682. [http://dx. doi.org/10.1093/brain/awh682]. [PMID: 16317026].
Löscher W., Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci. 2005;6(8):591–602. doi: 10.1038/nrn1728. [http://dx.doi.org/10.1038/nrn1728]. [PMID: 16025095].
Römermann K., Helmer R., Löscher W. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology. 2015;93:7–14. doi: 10.1016/j.neuropharm.2015.01.015. [http://dx.doi.org/10.1016/j.neuropharm.2015.01.015]. [PMID: 25645391].
Koubeissi M. Neuropathology of the blood-brain barrier in epilepsy: support to the transport hypothesis of pharmacoresistance. Epilepsy Curr. 2013;13(4):169–171. doi: 10.5698/1535-7597-13.4.169. [http://dx.doi.org/10.5698/ 1535-7597-13.4.169]. [PMID: 24009480].
Rogawski M.A., Löscher W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 2004;5(7):553–564. doi: 10.1038/nrn1430. [http://dx.doi.org/ 10.1038/nrn1430]. [PMID: 15208697].
Møller R.S., Schneider L.M., Hansen C.P., Bugge M., Ullmann R., Tommerup N., Tümer Z. Balanced translocation in a patient with severe myoclonic epilepsy of infancy disrupts the sodium channel gene SCN1A. Epilepsia. 2008;49(6):1091–1094. doi: 10.1111/j.1528-1167.2008.01550.x. [http:// dx.doi.org/10.1111/j.1528-1167.2008.01550.x]. [PMID: 18294202].
Yu F.H., Mantegazza M., Westenbroek R.E., Robbins C.A., Kalume F., Burton K.A., Spain W.J., McKnight G.S., Scheuer T., Catterall W.A. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 2006;9(9):1142–1149. doi: 10.1038/nn1754. [http://dx.doi.org/10. 1038/nn1754]. [PMID: 16921370].
Escayg A., Heils A., MacDonald B.T., Haug K., Sander T., Meisler M.H. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. Am. J. Hum. Genet. 2001;68(4):866–873. doi: 10.1086/319524. [http://dx.doi.org/10.1086/319524]. [PMID: 11254445].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shamsieva Umida Abduvakhitovna

This work is licensed under a Creative Commons Attribution 4.0 International License.