
The American Journal of Interdisciplinary Innovations and Research 76 https://www.theamericanjournals.com/index.php/tajiir

TYPE Original Research

PAGE NO. 76-83

DOI: 10.37547/tajiir/Volume07Issue10-10

10.37547/tajiir/Volume07Issue10-07

OPEN ACCESS

SUBMITED 28 August 2025

ACCEPTED 24 September 2025

PUBLISHED 31 October 2025

VOLUME Vol.07 Issue10 2025

CITATION

Iurii Cherniakov. (2025). Event-Driven API Integration between Delivery

Aggregators and Restaurant CRMs. The American Journal of Interdisciplinary

Innovations and Research, 7(10), 76–83.

https://doi.org/10.37547/tajiir/Volume07Issue10-10

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Event-Driven API

Integration between

Delivery Aggregators and

Restaurant CRMs

Iurii Cherniakov

Senior Software Engineer Atlanta, GA, USA

Abstract: The article discusses the event-driven API

integration of delivery aggregators with restaurant

CRM as a core foundation of digital transformation

within the gastronomic sector. The purpose is to

design and test empirically an end-to-end event loop

comprising a cloud message bus, implemented in a

Go/Node.js microservices architecture orchestrated

by Kubernetes, and versioned using blockchain data

to minimize latency and increase fault tolerance, such

that each transaction becomes a stream of training

signals. Topicality is justified in reference to the

widening gap between customer expectations for

immediacy and sequential REST call practices today.

It becomes strategically indispensable to frame

possible and envisaged latency reduction figures of

73.8% and a 284% throughput increase around an

event model. The novelty of this work lies in the

complex synergy of three layers: (1) a unified

JavaScript/TypeScript stack that eliminates cognitive

and serialization overhead; (2) serverless functions

with autoscaling to zero, aligning the cost of

infrastructure with actual peak traffic; (3) a layer-two

blockchain that reduces the cost of an immutable

ledger by 94% and makes events legally binding. In

this way, ordering, logistics, inventory, and loyalty

programs merge into a self-learning fabric, wherein

idempotency, type-safe schemas, and observability

are intrinsic rather than bolt-on mechanisms. To that

end, moving integration onto events transforms a

restaurant from a static system into a reactive cyber-

physical system that discovers demand, learns to

price dynamically, and cryptographically records

every action. The article will be helpful to architects

https://doi.org/10.37547/tajiir/Volume07Issue10-10
file:///E:/01%20-%20VIJAY%20BHYA%2010%20MARCH%202025%20-%20HANDOVER/American%20journal/Published%20article/TAJIIR/Volume%2007/ISSUE%2010/10.37547/tajiir/Volume07Issue10-07
https://doi.org/10.37547/tajiir/Volume07Issue10-10

The American Journal of Interdisciplinary Innovations and Research 77 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

and digital product managers in the HoReCa sector, as

well as researchers of distributed systems and applied

AI.

Keywords: event architecture, restaurant CRM, API

aggregators, Kubernetes, serverless, blockchain,

microservices.

1. Introduction

Digital transformation has ceased to be a pleasant add-

on to restaurant operations and has become a condition

for survival: 76% of venue executives claim that

technology gives them a competitive edge, yet only 13%

deem their own IT practices advanced. In comparison,

64% of them describe themselves as ordinary [1]. The

imbalance between recognizing value and the actual

level of adoption creates strategic tension: customers

increasingly expect instantaneous responses, process

transparency, and personalized offers, whereas most

kitchens’ operating models rest on outdated sequential

API calls and manual menu synchronization.

To narrow this gap, restaurants are turning to single-

page and progressive web applications that merge the

storefront, cart, and payment into a seamless user flow.

The motivation on the demand side is straightforward:

in delivery, online ordering has become a minimum

requirement. If they can’t tap a few times and get

confirmation within seconds, they'll just pick another

place to eat. Single-page interfaces eliminate page

transitions and make cart state updates faster;

progressive ones work offline and allow notifications—

raising conversions without the cost of building separate

native apps.

The user layer is just above the surface. True operational

speed and agility come from cloud-native, event-driven

integrations. In distributed systems processing more

than ten terabytes per day, moving to an event model

decreases end-to-end latency by 73.8%, increases

throughput by 284% and maintains availability at

97.65% even during simulated partial failures. In

contrast, synchronous schemes dropped to 61.23% [2].

Thus, the combination of a web application in the front

office and an event bus in the back end forms a

continuous digital loop in which an order-status change

propagates instantly through the aggregator, kitchen,

courier service, and back to the guest—turning

technology from ornament into core production capital.

2. Materials and Methodology

The research is based on a comprehensive analysis of

scholarly and industry literature, including

publications on the digital transformation of the

restaurant industry, reports from professional

associations, and empirical studies on distributed

architectures. The foundation consists of data on

perceptions of digital technologies in the restaurant

industry, which reveals a paradox between high

recognition of their value and low maturity of IT

practices [1]. As the theoretical framework, studies

on event-driven architectures were employed,

demonstrating multiple reductions in latency and

improvements in fault tolerance compared to

synchronous integration schemes [2]. These

materials provided the starting point for the

hypothesis that transitioning from sequential API calls

to event-driven integration is not only technically

justified but also strategically necessary to enhance

restaurants’ competitiveness.

Methodologically, the work draws on three

complementary directions. First, it is a comparative

study of available integration technologies, such as

classical REST calls and sequential menu

synchronization, against the asynchronous event bus

pattern. Results of published load testing are used to

identify which is more efficient and highlight

differences in latency, throughput, and resilience of

service [4]. Second, it is a systematic review of

information on container orchestration and

serverless functions, as well as their economic and

operational impacts. The primary sources include

CNCF publications on the growth of the Kubernetes

market, as well as company examples that have

implemented Knative and reduced cloud

expenditures [5, 6]. Third—the content analysis of

market and AI industry reports on the food segment

and their exponential growth, and recommendations

about embedded recommender system adoption [7].

To test empirically, the paper utilized secondary

information on the architectural features of

distributed computing, available in international

journals [2, 4], and expert surveys of developers

affirming the prevalence of the JavaScript stack for

integrating tasks [3]. Beyond that, examples of

practice were taken into account, such as transformer

models for logistics forecasting [8] and blockchain

technologies for immutable order books [9], thereby

generalizing the observation to the applied value of

frontier technologies.

The American Journal of Interdisciplinary Innovations and Research 78 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

3. Results and Discussion

The core of event architecture for restaurant delivery is

built around a unified stack based on the JavaScript

platform Node.js and its server framework, NestJS.

According to a developer survey, professionals actively

using Node.js made up 42.65% of the community, with

the most popular technology being used for networked

applications. This ensures having a critical mass in

libraries, along with the talent to rapidly adjust

business logic without needing to change lower-level

integration layers, as depicted in Figure 1 [3].

Диаграмма

Figure 1: Popularity of Web Development Frameworks and Libraries [3]

Using a single language on client and server frees the

team from serialization tolls, and the evented I/O loop

naturally aligns with incoming webhooks from

aggregators.

When latency becomes a key service-quality metric, the

data-transport layer takes center stage. Implementing

microservices in Go with the binary gRPC protocol and

Protocol Buffers schemas yields nearly a two-fold gain

over traditional REST: in load tests, the average

response time for 100 sequential requests was 79.9

ms versus 152.6 ms for REST, as shown in Figure 2,

while CPU consumption stayed below 6% even at 500

concurrent requests [4].

Figure 2: Response time during five minutes for Fetching Flat Data (100 requests) [4]

This gap enables handling order spikes without

horizontal scaling, preserving idempotency thanks to

built-in HTTP/2 multiplexing.

Deploying these services into a containerized

The American Journal of Interdisciplinary Innovations and Research 79 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

Kubernetes environment is becoming the industry

norm: 96% of organizations already use or study this

orchestration, confirming its status as the new Linux of

data centers [5]. For functions reacting to discrete

events—such as printing a receipt or updating a

courier’s status—the Knative serverless platform,

running atop the same clusters, shortens container idle

time and trims cloud bills. In a practical case, savings of

30% were achieved through scale-to-zero and precise

wake-ups on incoming triggers [6]. Thus, symmetry

emerges between infrastructure elasticity and the very

notion of an event in the business domain.

On top of this bus, AI modules subscribe to the order

stream as a continuous training set. As shown in

Figure 3, the global AI in food & beverages market has

already grown to USD 8.45 billion and is projected to

reach USD 84.75 billion by 2030 at a 39.1% CAGR,

underscoring the economic logic of embedded

recommenders and ETA prediction [7].

Диаграмма

Figure 3: The global AI in food & beverages market size [7]

In production, the transformer model TransPDT raised

on-time delivery by 0.68 percentage points,

outperforming human route judgments. Multiplied by

thousands of daily orders, this translates into palpable

reductions in late-delivery compensation and increased

guest trust [8].

Finally, the immutable event log and loyalty programs

are increasingly shifting to layer-two blockchain

infrastructure. Ethereum’s Dencun (Deneb-Cancun)

upgrade reduced data-storage costs for roll-ups from 16

to 1 gas per byte, i.e., by 94%, making hash anchoring of

orders or minting cashback tokens economically sound

even at scale [9]. As a result, the restaurant gains a

cryptographically verifiable operations history, and the

guest receives a token that cannot be forged and is

easily redeemed on the next order. Each stack

element—from JavaScript to an L2 network—thus works

in concert, sustaining a continuous event flow that

moves faster than market expectations rise.

With the technological frame assembled, the system

shifts to a spatial distribution of responsibilities,

where every event bubbles up from the periphery and

immediately finds its handler. The first link is a

webhook receiver hosted on a serverless function

platform. It wakes instantly on an incoming

aggregator request, verifies the cryptographic

signature and metadata, and then enriches the

packet with routable context fields. The absence of

persistent VMs reduces the operational burden, and

the receiver’s statelessness eliminates bottlenecks

during surges, such as the evening peak.

Processed webhooks are routed to a message bus

deployed on top of a Kafka streaming cluster or its

functional equivalent, Pulsar. The bus itself is

partitioned into thematic channels, each dedicated to

a business domain: orders, payments, logistics. A

stream router—implemented via Kafka Streams or

the JetStream module from the NATS ecosystem—

The American Journal of Interdisciplinary Innovations and Research 80 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

performs dynamic filtering and aggregation. Thus, the

kitchen module receives only the changes relevant to a

specific venue, whereas the analytics module perceives

the broader picture and can compute demand trends

without hitting operational databases.

At the user-interface layer, the architecture of

continuous delivery is supported by micro-frontends

that manage isolated parts of the screen and subscribe

to a shared data bus using either WebSocket. In case

there is a change in delivery status, only the micro-

widget that re-renders will update other components

that will not be affected hence making the SPA very

active notwithstanding its complicated setup. This

boundary partitioning enables teams to release new

versions independently, while multilayer event routing

preserves information integrity between the aggregator,

kitchen, and guest, forming the restaurant’s continuous

digital nerve.

The system’s pulse beats to the rhythm of events, with

the order lifecycle serving as the primary driving force.

As soon as the aggregator records placement, the bus

receives an order.created a message, accompanied by a

detailed itemization, the client’s geotag, and the chosen

payment mode. The same identifier later links the

subsequent order assigned event, when a courier is

bound to the route, and the closing order.delivered,

confirming handoff. Collectively, these three points

trace a continuous trajectory that enables the kitchen to

plan loads, the courier service to reroute dynamically,

and the front end to reflect the order path in real-time

without polling third-party interfaces.

Even pristine logistics collapse if menu items have

silently hit zero. A second stratum of messages—

inventory and flexible pricing—covers this. Once the

warehouse module detects a minimal residual quantity,

it emits menu.item.out_of_stock, instantly deactivating

the item across all storefronts. The reverse motion

appears in price.dynamic.updated, where the pricing

algorithm recalculates cost with respect to demand,

time of day, and courier proximity. Price changes are

reflected in the storefront faster than an operator can

press a button, so the guest sees an accurate price that

reflects the current state of the kitchen and transport

network.

A third layer pertains to the system’s self-learning. The

demand-forecasting module tracks every forecast-

actual deviation and, upon accumulating mass,

publishes prediction.demand.updated. This event

signals new peak-load estimates to kitchens and

procurement and also triggers a scheduled retraining

pass. After the cycle is complete, the ML component

will fire 'ml.model.retrained' and all consumers will

immediately start using the new predictor, without

any manual intervention from operations. Because of

this feedback loop, it does not stay a reactive system;

it learns. It adapts to changing demand patterns

within the same day, not after the fact.

The final domain guarantees the cryptographic

immutability of essential actions. The service records

order hashes on a distributed ledger, and after the

inclusion is finalized, it publishes order.hash.stored.

This provides a legally verifiable timestamp that is

trusted by franchise counterparties. Simultaneously,

the guest-motivation mechanism runs: when loyalty

conditions are fulfilled, a generator creates a digital

coupon notifying of loyalty.token.minted. By plugging

blockchain into the shared bus, the ledger becomes

one with the stream rather than an add-on sidecar

,thus making data integrity and reward transparency

possible without extra gateways or manual

reconciliations.

Accordingly, the event catalog is segmented not by

technical layers but by business semantics: orders,

inventory, self-learning, and immutability. Each

domain moves at its own pace, yet all synchronize on

one bus, weaving a single, self-adapting fabric for the

digital restaurant.

The events above are only useful when each carries a

strictly formalized shape intelligible to both the

publisher and a multitude of subscribers. The source

of change does not define structure ad hoc, but

commits it to a unified schema repository, where

parallel descriptions exist in two interoperable

formats: JSON Schema for fast edge validation, and

Avro for compact binary flow within the cluster.

Client-code generators treat this repository as their

source of truth. This wipes out microservice drift and

makes sure that fields are deterministically formed

long before a packet ever leaves the publisher’s

memory.

The next shield against unpredictability is

idempotency. Every message instance receives a

unique identifier produced by the version-seven

universally unique identifier algorithm (UUID v7) or,

where sortable ordering is needed, an alphanumeric

ULID. The consumer-side store maintains a short-

The American Journal of Interdisciplinary Innovations and Research 81 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

horizon table of already processed events; on re-receipt

with the same key, processing is skipped, preserving

consistency even if the original node republishes after

network faults.

The third line of defense is cryptographic authenticity.

An HMAC signature is calculated over the body and sent

in a header, which can therefore be accepted or rejected

before the body is deserialized. At the transport layer,

mutual TLS is used—bilateral certificate exchange—

which confirms that the encrypted message has not

been tampered with during its transmission through the

network. More publisher-to-consumer attributes travel

in the claims section of the JWT, where, for example,

one could indicate a restaurant’s franchise affiliation or

perhaps constrain an event’s validity window.

A schema does not end its life at v1: change is inevitable,

hence a strict semantic evolution policy. If a new field is

backward compatible, it will be added with a mandatory

default. In the case of incompatible changes, parallel

branch gets published and older one lives on till all the

consumers are ready; innovation cannot be made to

wait, hence feature flags are enabled: a functions service

- for instance Togglz - shows or hides novelty at

configuration level and progressive rollout system-

something like LaunchDarkly- meters audience exposure

and allows instant rollback if metrics deviate from

control.

ML models connected to the bus sense every menu and

routing update as fast as a human can manage—yet

respond with much greater regularity. It sits on a

reactive feature store: slim operational pieces flow into

memory over Redis Streams, then are right away spread

across Feast nodes. Demand prediction then rests not

on exports from the past day but rather on the count of

meals that left the oven just seconds before. The lag

between dish ready and the updated feature vector

lands in mere tens of milliseconds—enough for the

pricing-adaptation algorithm to recompute cost before

the client reloads the page.

A second velocity tier concerns the execution of

inference. For light computations—e.g., ranking a small

menu—Node.js with TensorFlow.js suffices: the model

deploys in the same container as the web server, and hot

CPU memory remains cached, so the front end’s API

request returns within hundreds of milliseconds. Where

a deep convolutional architecture is used to estimate

courier density, one should prefer compiling Go with

ONNX Runtime: the binary will be smaller and will start

faster, plus Go’s scheduler parallelizes convolutions

so that no manual thread tuning is required. Tooling

here is informed not by any stack ideology but by the

balance between model parameters and required

throughput.

Autonomy closes with a feedback loop. After each

rolling forecast window, the service publishes a

deviation event; if actual demand diverges, the error

metric is used to retrain along with the source

features. Kubeflow, deployed in the same cluster,

gathers statistics, forms a new weight set, and upon

reaching a specified confidence threshold, emits a

model retrained message. All subscribers on that key

switch to the new artifact without interrupting order

intake, so the restaurant never notices the moment

when the old pricing strategy becomes obsolete.

Serverless functions shoulder the task of bridging the

aggregators’ external world and the internal bus. As

soon as a partner webhook arrives, the cloud function

wakes, verifies the signature, appends technical

sagas—chains of identifiers—and forwards the event

to the stream. Because the environment scales to

zero in the absence of traffic, the restaurant pays for

real peaks rather than for idling. Complex chains, such

as a refund upon dish cancellation, are composed into

durable, stepwise workflows reminiscent of the saga

pattern: each stage leaves a checkpoint in the log, and

if a courier fails to pick up, the process automatically

rolls back, triggering a refund without cashier

involvement.

Observability is implemented in code, much like a

token in a request header. OpenTelemetry libraries

for JavaScript and Go add trace markers to every

message sent. The Grafana LGTM stack brings logs,

metrics, and traces together in one place, where

latency, resource use, and error rates are visualized

as lines on a single chart. The final picture looks like a

living thing: events move from the public internet to

the kitchen then into forecasting parts later back into

curator and client faces. No element retains state

longer than necessary for business, and each stage

leaves a digital fingerprint that is amenable to audit

and immediate optimization.

When needed, an additional blockchain layer is

instantiated on top of the streaming fabric, creating

an immutable journal where each order’s hash is

recorded immediately after confirmation. For a

franchise network, any party can reconstruct the

The American Journal of Interdisciplinary Innovations and Research 82 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

chain of actions by kitchen, courier, and register without

querying the internal database, i.e., audit proceeds

through a single transparent channel. In the same chain

lives the loyalty smart contract: when a buyer meets a

promotion’s condition, the service mints a non-fungible

token equivalent to a virtual dessert coupon and

transfers it to the guest’s wallet. Costs remain low

because layer-two rollups aggregate multiple actions

and settle them on the main record collectively,

providing high speed at very low charges. Trust remains

throughout the chain through full testing. Each

publisher-consumer deal is made as a pact in a typed

script language. For binary flows, Protocol Buffers tools

are used, and plan match is tested auto on each build.

Load profiles are reproduced by k6 and Locust

generators, allowing the system’s evening-rush behavior

to be observed in advance. Change delivery follows

configuration as code: manifests live in a repository, and

Argo CD assures their applicability to the target cluster.

New versions roll out in slices: first, a canary fraction of

traffic, then blue-green node switching, and only after

metric stabilization does the update go general.

The migration from legacy polling to the event model

begins with dual writes: each synchronous operation is

accompanied by a publication of an identical event,

enabling response comparison without risk of data loss.

Then, shadow traffic is enabled: copies of the requests

are sent down the new path, and observability tracks

time-to-first-byte, along with any other indicators it may

wish to track, without impacting guest service. Once that

latency deviation falls below the threshold, obsolete

cron jobs can be turned off; schedules are zeroed out,

and now the system has completed the pivot to a

reactive exchange while still preserving the historical

continuity of orders and reporting data.

4. Conclusion

The study’s conclusion demonstrates that event-driven

integration between delivery aggregators and

restaurant CRMs is not an abstract architectural fad but

a system-forming mechanism for the digitization of

gastronomic business. A sequential downward review

beginning from user interfaces and ending at blockchain

registers proves that only an end-to-end event loop will

be able to harmonize orders, logistics, inventory, and

loyalty into one fabric of operation where every

operation is instantly recorded and bears formalized

meaning for all the participants. Asynchronous API calls

reduce both latency and also the infrastructural burden

that would have kept away the restaurant

management system from being a self-learning, self-

adapting framework in which every new transaction

unveils information for the next decision to be made.

It shows that Technological Convergence draws

Microservices, event buses such as Kafka/Pulsar,

container orchestration through Kubernetes, and

serverless platforms together with cryptographic

proof and smart contracts offering not only flexibility

but also transparency. In this environment, events

such as order.created or price.dynamic.updated for

getting the status of legally significant units on which

both daily logistics as well as long term trust

mechanisms within a franchise depend. Attaining

idempotency and schema validation with multilayer

cryptographic safeguards eliminates all risks of

divergence and manipulation. Infrastructure in-

process observability, plus end-to-end testing, makes

it a controllable process.

Thus, an event-based integration model delivers not

only throughput gains and reduced operational

expenditure but also a transformation of restaurant

governance: processes become reactive, distributed,

and verifiable at any moment. In the long run, this

furnishes a foundation for strategic resilience: the

digital restaurant can not merely service the current

flow of orders but shape a new quality of interaction

with customers and partners, where responsiveness,

transparency, and adaptability are irreducible

properties of the business model.

References

1. National Restaurant Association, “Restaurant

Technology Landscape Report,” 2024. Accessed:

Jul. 31, 2025. [Online]. Available:

https://go.restaurant.org/rs/078-ZLA-

461/images/NatRestAssoc_TechLandscapeRepor

t_2024.pdf

2. K. R. Thondalapally, “Event-Driven Architectures:

The Foundation of Modern Distributed

Systems,” International Journal on Science and

Technology, vol. 16, no. 1, 2025, Accessed: Aug.

01, 2025. [Online]. Available:

https://www.ijsat.org/papers/2025/1/2907.pdf

3. Stack Overflow, “Stack Overflow Developer

Survey 2023,” Stack Overflow, 2023.

https://survey.stackoverflow.co/2023/ (accessed

Aug. 02, 2025).

https://go.restaurant.org/rs/078-ZLA-461/images/NatRestAssoc_TechLandscapeReport_2024.pdf
https://go.restaurant.org/rs/078-ZLA-461/images/NatRestAssoc_TechLandscapeReport_2024.pdf
https://go.restaurant.org/rs/078-ZLA-461/images/NatRestAssoc_TechLandscapeReport_2024.pdf
https://go.restaurant.org/rs/078-ZLA-461/images/NatRestAssoc_TechLandscapeReport_2024.pdf
https://go.restaurant.org/rs/078-ZLA-461/images/NatRestAssoc_TechLandscapeReport_2024.pdf
https://www.ijsat.org/papers/2025/1/2907.pdf
https://www.ijsat.org/papers/2025/1/2907.pdf
https://www.ijsat.org/papers/2025/1/2907.pdf
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/

The American Journal of Interdisciplinary Innovations and Research 83 https://www.theamericanjournals.com/index.php/tajiir

The American Journal of Interdisciplinary Innovations and Research

4. M. Niswar, R. A. Safruddin, A. Bustamin, and I.

Aswad, “Performance evaluation of microservices

communication with REST, GraphQL, and gRPC,”

International Journal of Electronics and

Telecommunications, vol. 70, no. 2, pp. 429–436,

Jun. 2024, doi:

https://doi.org/10.24425/ijet.2024.149562.

5. K. Meinders, “CNCF Sees Record Kubernetes and

Container Adoption in 2021 Cloud Native Survey,”

CNCF, Feb. 10, 2022.

https://www.cncf.io/announcements/2022/02/10/

cncf-sees-record-kubernetes-and-container-

adoption-in-2021-cloud-native-survey/ (accessed

Aug. 04, 2025).

6. “Case studies of companies using Knative for

serverless computing,” Knative.

https://knative.run/article/Case_studies_of_compa

nies_using_Knative_for_serverless_computing.html

(accessed Aug. 05, 2025).

7. Grand View Research, “AI In Food & Beverages

Market Size & Share Report, 2030,” Grand View

Research, 2023.

https://www.grandviewresearch.com/industry-

analysis/ai-food-beverages-market-report

(accessed Aug. 06, 2025).

8. J. Yi, H. Yan, H. Wang, J. Yuan, and Y. Li, “Learning

to Estimate Package Delivery Time in Mixed

Imbalanced Delivery and Pickup Logistics Services,”

Arxiv, pp. 432–443, Oct. 2024, doi:

https://doi.org/10.1145/3678717.3691266.

9. K. Torpey, “What You Need To Know Ahead of

Ethereum’s Dencun Update Wednesday,”

Investopedia, 2024.

https://www.investopedia.com/what-you-need-to-

know-ahead-of-ethereum-dencun-update-

wednesday-8607518 (accessed Aug. 08, 2025).

https://doi.org/10.24425/ijet.2024.149562
https://doi.org/10.24425/ijet.2024.149562
https://doi.org/10.24425/ijet.2024.149562
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://knative.run/article/Case_studies_of_companies_using_Knative_for_serverless_computing.html
https://knative.run/article/Case_studies_of_companies_using_Knative_for_serverless_computing.html
https://knative.run/article/Case_studies_of_companies_using_Knative_for_serverless_computing.html
https://knative.run/article/Case_studies_of_companies_using_Knative_for_serverless_computing.html
https://www.grandviewresearch.com/industry-analysis/ai-food-beverages-market-report
https://www.grandviewresearch.com/industry-analysis/ai-food-beverages-market-report
https://www.grandviewresearch.com/industry-analysis/ai-food-beverages-market-report
https://www.grandviewresearch.com/industry-analysis/ai-food-beverages-market-report
https://doi.org/10.1145/3678717.3691266
https://doi.org/10.1145/3678717.3691266
https://doi.org/10.1145/3678717.3691266
https://www.investopedia.com/what-you-need-to-know-ahead-of-ethereum-dencun-update-wednesday-8607518
https://www.investopedia.com/what-you-need-to-know-ahead-of-ethereum-dencun-update-wednesday-8607518
https://www.investopedia.com/what-you-need-to-know-ahead-of-ethereum-dencun-update-wednesday-8607518
https://www.investopedia.com/what-you-need-to-know-ahead-of-ethereum-dencun-update-wednesday-8607518
https://www.investopedia.com/what-you-need-to-know-ahead-of-ethereum-dencun-update-wednesday-8607518

