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Abstract- Stents and implantable defibrillators are
examples of cardiovascular equipment that keep people
alive. The safety and dependability of these devices are
very important. The Conventional Failure Mode and
Effects Analysis (FMEA) methods are well recognized,
and they tend to be subjective, reactive, and highly
dependent on the past and human knowledge. This
paper explores how the Failure Mode and Effects
Analysis (FMEA) process of cardiovascular devices can
be enhanced with the help of Artificial Intelligence (Al),
namely, natural language processing (NLP), machine
learning (ML), and predictive analytics. We suggest a
modern FMEA framework that uses Al to accurately find
possible failure modes and automatically update risk
trials,

profiles using real-time data from clinical

manufacturing, and post-market surveillance. The
objective is to demonstrate that Al-enhanced FMEA can
transform device design and manufacturing into a more

proactive, data-informed safety framework.

Keywords: Al, FMEA, Cardiovascular Devices, Risk
Management, Predictive Analytics, NLP, Medical Device
Reliability, Failure Modes

1. Introduction

The market of cardiovascular equipment is experiencing
a major growth over the recent years owing to the high
rate of heart disease across the planet. The use of
medical machines that help to save the lives of millions
of people per year like pacemakers, prosthetic valves, or
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vascular grafts has a critical value, but at the same time,
a small deviation may lead to serious complications or
require recall. FMEA has been a systematic method of
identifying and minimizing hazards in the development
of a device, however, it tends to be reliant on inactive
failure databases, localized knowledge as well as manual
input of carpenter severity risk and likelihood values.

Al offers an exciting opportunity to change this, by
integrating real-time clinical data, historical failure
trends, and predictive algorithms, we can make FMEA
This paper
demonstrates how by using Al, FMEA can have better

smarter, faster, and more precise.
abilities to predict failure modes across the whole
product lifecycle, i.e., during design and deployment,
and it also focuses on how it can help regulatory

compliance, manufacture efficiency and patient safety.

2. Limitations of Traditional FMEA in Cardiovascular
Applications

Conventional FMEA depends collaborative

brainstorming to recognize failure modes, assigning

on

severity (S), occurrence (0), and detection (D) ratings to
compute the Risk Priority Number (RPN). Although
beneficial, the process exhibits numerous constraints:

- Subjectivity: Scoring is highly subjective and can vary
between teams and facilities.
- Static data: Risk assessments are often based on fixed
assumptions outdated databases.
- Limited pattern recognition: FMEA struggles to detect
complex or rare failure modes, especially those that

emerge only after long-term implantation.

and

In cardiovascular devices, the dynamic interaction of
materials with tissue and blood flow presents significant
limitations. Artificial intelligence, particularly machine
learning models created with large datasets, offers a
method  for evidence-based

more  objective,

assessments.

3. Al Integration: Reimagining FMEA

The integration of Artificial Intelligence into Failure
Mode and Effects Analysis (AI-FMEA) represents a
pivotal shift from traditional, static approaches to a
dynamic, data-driven framework. By leveraging tools
such as machine learning (ML), natural language
processing (NLP), and real-time analytics, Al enables a
continuous and intelligent reassessment of failure risks
across the device lifecycle. This section outlines key
innovations introduced through Al-enhanced FMEA.

3.1 Data-Driven Failure Prediction

Machine learning models may interfere with the past
data on failure, such as the data obtained in clinical
trials, adverse event databases, and post-market
surveillance reports, with the help of which patterns
may be detected which humans may fail to list. To use
an example, when a given model of catheter starts
displaying more stent migrations, in particular
demographics, the model can be noted as a high-effort

risk review priority.

For instance, in the case of a vascular catheter system,
an Al model trained on population-wide device usage
data identified a statistically significant uptick in stent
migration among a particular demographic subgroup.
Such an insight prompted an early flagging of this design
for in-depth risk review, well before traditional methods
detected the trend. This proactive identification enables
earlier corrective action, potentially reducing patient
harm and regulatory impact.

3.2 Natural Language Processing (NLP) in Design
Reviews

Algorithms based on NLP script can scan the design
paperwork, clinical notes and other regulatory filings to
determine the possibilities of risk. As an example, an
auto-tag of the failure mode could be done on the
mention of a term such as thrombus formation or lead
dislodgment.

Figure 1. Al-Powered FMEA Workflow

For example, the term “thrombus formation” appearing
in physician notes or testing documentation can be
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auto-tagged by the Al system as a known failure mode.

Similarly, ‘lead dislodgment’ mentioned in a
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retrospective report can be linked with associated

components, triggering a review of anchoring
mechanisms. This capability reduces reliance on manual
document reviews and ensures broader, faster coverage

of risk-related content.

A graphical representation of how Al components—data
collection, NLP, predictive analytics—interact with the
FMEA process to generate dynamic risk profiles.

Table 1. Risk Priority Number (RPN) Comparison: Traditional vs Al-Enhanced FMEA

. . . RPN RPN (Al-
Failure Mode Occurrence Severity | Detection .
(Traditional) Enhanced)

Electrode

. 4 8 4 128 96
degradation
Firmware

3 9 3 81 60

lockup
Thrombus

. 2 7 5 70 50
formation

3.3 Dynamic RPN Scoring

Al can continuously update the scores with real-world
input as opposed to static S/O/D values. Unlike
conventional FMEA, which relies on static Severity (S),
Occurrence (0), and Detection (D) values, AI-FMEA
enables continuous recalibration of these parametersin
light of real-world feedback.

For example:

Severity: recalibrated using mortality/morbidity data.

Occurrence: updated with frequency from field reports.

Detection: adjusted based on testing data and
predictive maintenance indicators. This allows an FMEA
that is dynamic, and which reforms over a period of time

and enhances precision as additional data is assimilated.

This results in an evolving Risk Priority Number (RPN),
enhancing the granularity and timeliness of risk
management. Over time, these updates feed into a self-
learning loop that strengthens product safety across
successive device iterations.
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Figure 2. Al-Enhanced FMEA for Dynamic Risk Profiling
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4. Case Study: Al-Enhanced FMEA for Implantable
Defibrillators

In an educational activity, we demonstrated the use of
AIl-FMEA on a test group of the implantable cardioverter
defibrillators (ICDs). Using routinely de-identified failure
reports and brief clinical narratives, the algorithm
uncovered two legacy, traditional, so-called low-priority.
Failure modes, namely, electrode wire degradation and
firmware lockup that turned out on review to have
remarkably high incident rates in real-world clinical
practice. After review of the preliminary FMEA, Al
algorithm identified a negative relationship between the
use of specific post-surgical antibiotic protocols and an
unexpected frequency of device failure that had not
previously been noted. The observation led to the re-
visitation of design documentation and consequent
revision of the protocol instructions issued to patients.
Material analysis led to subsequent modification of
composition of the electrode substrate and reduced the
identified failure mode.

Because of these insights, several corrective actions
were undertaken. Design documentation was updated,
patient handling protocols were revised, and the
modified to
Subsequent
in the
occurrence of the identified failure mode, validating the

electrode material composition was

enhance long-term biocompatibility.

monitoring showed a measurable decline

impact of the AI-FMEA intervention.

This case study exemplifies the value of Al in surfacing
hidden risk patterns, recalibrating risk assessments
based on real-world evidence, and supporting proactive
refinement, ultimately

design enhancing device

reliability and patient safety.
5. Regulatory and Industry Implications

In the world of regulations, a strong trend towards
adopting artificial intelligence (Al) in risk mitigation can
be observed. Failure Mode and Effects Analysis (FMEA)
that has been enabled by Al aligns with the
requirements of the FDA Total Product Life Cycle (TPLC)
approach and the risk-management doctrine of ISO
14971. With this combined model, multiple benefits are
achieved: it strengthens the design history file (DHF),
facilitates design disciplines of Design to Reliability (DfR),
and streamlines pre-market reviews. In manufacturing
the application of this

organizations, systematic

approach has shown tangible benefits.

There is a marked decrease in the costly recall of
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products; there is an improvement in the first pass yield;
ability
especially

conduct
the
manufacturing lines, which are manufacturing under a

and increased to predictive

maintenance, in cardiovascular
high rate of volume. From an industry standpoint, the
practical benefits are equally compelling. Al-driven
FMEA has demonstrated measurable outcomes in
reducing costly product recalls, improving first-pass
manufacturing yields, and enabling condition-based
maintenance. These improvements are particularly
impactful in high-volume, high-risk cardiovascular
device manufacturing environments, where quality
deviations can have significant clinical and economic

consequences.

Moreover, the use of Al in FMEA allows manufacturers

to demonstrate a systematic, reproducible, and
transparent approach to risk mitigation, an attribute
increasingly valued by regulators. As Al tools continue to
mature, their integration into core quality processes like
FMEA will

regulatory compliance and industry competitiveness in

likely become a key differentiator for

the coming decade.
6. Conclusion and Future Work

FMEA with Al shows great potential to redefine risk

management in the modern cardiovascular device
development and production. With its ability to
eliminate inherent human biases, align analysis

processes and testing with real-time, constant feedback,
and re-refine knowledge attained through field
experience, such systems serve to actively promote
safer gadgets and more efficient developmental
processes. Opportunities on the horizon, as the scope of
availability of Al tools is expected to increase, will be in
the development of standardized AI-FMEA templates,
the

measurements, and linking the procedure to digital

incorporation of patient-reported outcomes

twins to validate it virtually.

This current discussion is therefore an effort to foster
data

the
emergence of a system of proactive, intelligence-driven

partnership between biomedical engineers,

scientists, and clinical practitioners towards
device safety. As artificial intelligence tools become
more ubiquitous, future directions include creating
standardized AI-FMEA templates, embedding patient-
reported outcomes, and using digital twins for virtual

verification. These will aid in the development of an

evidence-based, more adaptive system for risk
management.
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Ultimately, this work urges greater collaboration among
engineers, clinicians, and data scientists to create a
forward-thinking, intelligent system for safety, one that
adapts with technology and focuses on patient well-
being. This paper underscores the need for a
collaborative, interdisciplinary approach to fully realize
the potential of AI-FMEA. A coordinated effort among
biomedical engineers, regulatory scientists, clinical
experts, and Al developers is essential to shape the next
generation of intelligent safety systems—ones that are
proactive, predictive, and ultimately centered on patient

well-being.
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