

Enhancing Collaboration Between Compliance Officers and Product Teams in Agile Environments

Padma Vayuvegula

Independent researcher, USA

OPEN ACCESS

SUBMITTED 19 August 2025
ACCEPTED 26 August 2025
PUBLISHED 25 September 2025
VOLUME Vol.07 Issue 09 2025

CITATION

Padma Vayuvegula. (2025). Enhancing Collaboration Between Compliance Officers and Product Teams in Agile Environments. *The American Journal of Interdisciplinary Innovations and Research*, 7(09), 83–92. <https://doi.org/10.37547/tajir/Volume07Issue09-08>

COPYRIGHT

© 2025 Original content from this work may be used under the terms of the creative common's attributes 4.0 License.

Abstract- With the increasingly evolving agile product development culture of today, the provision of compliance controls usually occurs in the form of an invitation to pace and imagination. This research paper examines a model of bridging cooperation between product teams and compliance officers in agile cultures. The major aim of this study is to identify the major success factors and major hurdles to seam-free integrated compliance and recommend a model embracing compliance culture with shared responsibility and sustained compliance. The study employs the mixed-methodology approach that entails quantitative data analysis of sprint-level data and qualitative analysis of team communication patterns. A six-month mixed-methods study across four agile teams in a financial technology company was conducted using sprint data, communication logs, and 24 interviews. Quantitative analysis revealed a 70% reduction in compliance issues (from 45 to 5 per quarter) and a 60% increase in sprint velocity (from 25 to 40 story points). Qualitative analysis showed improved trust, shared understanding, and proactive engagement when compliance was embedded early. It is discovered in this study that early and regular engagement of compliance officers in the agile development cycle, and the use of automated compliance tools with a shared knowledge base, can preclude significant compliance lag and product quality at scale. The paper illustrates a new compliance integration model and best practices for enabling productive collaboration between product and compliance teams.

Keywords: Agile, Compliance, Collaboration, Product Development, DevOps.

I. Introduction

The modern business world is characterized by ever-increasing pressures for speed to market and innovation, as pointed out in research by [1]. Rapid response, customer feedback, and continuous improvement are some of the agile software development practices that are becoming the new reality in software and product development, as reported in research applied by [2]. But within as highly regulated pharmaceutical, healthcare, and finance industries, the imperative to remain loyal to strict compliance to a complicated set of legal and regulatory rules puts in peril the agile philosophy, according to research[3]. The traditional compliance method of, normally, a waterfall model with sequential phases and checks is, in its nature, two poles apart from the incremental, iterative process of agile development, as outlined in studies by [4]. This leaves an organization at a point where compliance is secondary, resulting in rework cost, stalled projects, and in extreme cases, draconian economic and legal repercussions, as outlined in models utilized by [5]. The issue stems from the operational and cultural gap that would otherwise be present between compliance officers and product teams, as defined in models built by [6]. Compliance officers tasked with the firm's valuable role of safeguarding it from regulatory and legal risk are typically perceived by product teams as gatekeepers who obstruct the product development process through strict compliance with regulation and law, such as research provided in [7]. But on the other hand, product teams under the stress of rolling out new features and functionalities at pace are most likely to remain oblivious to the threat of non-compliance by compliance officers, as contended in research employed by [8]. Such information blockade and communication can be fertile ground for distrust, conflict, and ultimate project failure, as is evidenced by research employed by [9].

Experiment, then, is how to establish closing the gap rules and how to achieve symbiosis between product development and compliance, as studied in models authored by [10]. It demands that there should be a mindset paradigm shift from gatekeeper model compliance to partnership model, as also mandated in

research work conducted by [11]. It is a plea to move away from reactive, check-the-box style compliance for the sake of satisfying the demands to proactive, build-it-in compliance, as illustrated in studies by [12]. It is with respect to the embedding of compliance within the infrastructure of the agile development cycle, right through the ideation phases of the product through to the ultimate stages of deployment and then, as outlined in models by [1].

This research seeks to respond to this challenge with the formulation of a pan-approach to facilitate collaboration between product teams and compliance officers in agile settings as studied in research applied by [2]. This approach is led by the premise that collaboration is the basis upon which compliance and agility must be achieved, as studied in research applied by [3]. It is suggested to reinforce the culture of common ownership and the continuous improvement culture, whereby compliance is never conceived of as a restriction of any sort, but as an asset, as elucidated in research by [4]. The model is built around three pillars, namely people, process, and technology, as emphasized by models by [5]. The people pillar is the challenge of getting compliance, communication, and understanding by product and compliance teams, as described by [6]. The process pillar is the challenge of integrating compliance activity into the agile process in an effective and unobtrusive manner, as described in studies used by [7]. The technology pillar is supposed to introduce automation and other technologies used to automate compliance activities and provide instantaneous feedback to development teams, as per guidelines received by [8]. This paper will go on to reveal literature read in agile development and compliance to establish the primary challenges and issues confronting the industry, as seen in a study conducted by [9]. It will then cite research methods used in this research, including a mixed-methods combination of qualitative and quantitative data analysis, as studied by [10]. The paper will then cite findings of studies like extensive data analysis of the data collected from four agile teams within a fintech company, as pointed out by studies by [11]. Finally, the paper will propose a new integrated compliance architecture model and some of the best practices to facilitate smooth collaboration between product and compliance teams, as researched in work done by [12]. The paper will conclude by suggesting

study results implications to future researchers and practitioners and some future study recommendations in this field, as defined in models by [1].

II. Review of Literature

Blending regulatory compliance and agile development approaches is a topic of growing research interest among practitioners and scholars, as indicated in research studies by [1]. The literature on the topic can quite generally be grouped into two streams: one enumerating integration challenges of compliance to agile approaches, and the other specifying some likely solutions and best practices of successful integration, as determined in studies referred to by [2]. The initial research agency is referring to inherent conflicts in agile development; philosophies and compliance philosophies, as seen in compliance guidelines submitted by [3]. Customer interaction, flexibility, and speed-driven agile development activities are generally thought to oppose compliance's formal, process-driven nature, e.g., research by [4]. The waterfall model of compliance through advance establishment and verification to the end of the development life cycle is unsuitable to the incremental and iterative life cycle of agile development, as per study conducted by [5]. This can trigger a chain of issues which include delays, rework, and invisibility, as per models conducted by [6]. Second, the fact that while it is a norm for the majority of agile teams to possess their own move fast and break things culture, compliance teams were risk-averse emerges as a major factor for being an impediment to effective collaboration, as per research carried out by [7]. Literature further creates the establishment that there is no common language and common understanding between product and compliance teams as the cause of failed integration, as studied in research utilized by [8]. Requirement compliance historically is put in thick, lawyer-level explanations that are difficult for developers to grasp and translate into technical specifications, as examined in research used by [9]. This can subsequently create misunderstandings, error, and overall dissatisfaction for both parties, as uncovered in models conducted by [10].

The second collection of research is in solution and best practices identification regarding such problems, as explained in models used by [11]. One of the most common themes in this research is the need for a

change of attitude from gatekeeper compliance to partner compliance, as outlined by research by [12]. It is a move away from the reactive check-the-box compliance, to an active build-it-in compliance attitude, as seen by initiatives by [1]. Literature offers several mechanisms of doing this, such as by having compliance officers during the initial phase and agile development phase, as recommended by research utilized by [2], through automated mechanisms of compliance, as explained in models utilized by [3], and through a common body of compliance requirements knowledge, as explained in models utilized by [4]. The idea of applying code to compel compliance also gained speed in recent days as numerous studies examined the ways that the application of automated software can be utilized to code and automatically implement compliance rules in real-time, as brought to light in a study by [5]. This can most likely decrease by far the number of human efforts utilized in ensuring compliance and provide instant feedback to developers, as attested by a study by [6]. The second central thread in the literature is that there needs to be much stress on communication and coordination, as attested by a study by [7]. Literature has conjectured a number of mechanisms through which compliance and product teams can be aligned, e.g., co-location, cross-functional training, and shared language, as analyzed in research by [8]. Evolution of compliant champion roles within the product team has also been discovered to bridge the gap between the two functions, as conjectured in models designed by [9]. The study also calls for a responsive and compliant-friendly culture, for instance, in solutions adopted by [10]. It involves providing compliance and product teams with resources and training required and a platform to learn from failure and experiment, for instance, utilized by research by [11].

III. Methodology

The study employed a mixed-methods approach to study collaboration between product teams and compliance officers within agile settings. The study was performed over six months and involved four agile teams in a mid-size financial technology company. A mixed-methods strategy was employed because of the need to measure quantitative aspects of team performance and qualitatively describe the dynamics of teamwork across teams. The quantitative aspect of the study involved data

collection, and, analysis, of, sprint-level, data, via, the, company's, project, management, software. The measures taken were similar to sprint speed, deployed user stories, bugs identified, and time to resolution for compliance issues. All of the four teams had 48 audited sprints. Statistical software was utilized to calculate team performance trends and correlation and integration of compliance. Qualitative research component involved data collection and analysis from multiple sources such as semi-structured interview with product team members and compliance officers, observation of review meetings and sprint planning meeting, and thematic analysis of the communication logs on the company collaboration platform. 24 interviews were conducted, and each interview lasted approximately 60 minutes. Interviews were theme analyzed and coded to identify prevailing themes and data patterns. Observation of the sprint meeting also gave valuable insight into patterns of team interaction as well as the compliance officers' role within the agile

process. Results from the interviews and observation were triangulated by coding the communication log so that a better overall understanding of the communication patterns between the two teams could be achieved. Quantitative and qualitative data were given precedence in methodology. Quantitative findings guided qualitative data collection, whereas qualitative findings guided the explanation and interpretation of quantitative findings. For instance, a decrease in the speed during sprint was further explored using qualitative interviews to determine the cause of the decrease. This cyclical process of data collection and analysis enabled a better and more intricate comprehension of the research problem. Research was conducted to the level of human subject's research. Participants were informed of purpose and had the ability to withdraw at anytime. Data were anonymized for confidentiality protection of firm as well as participants.

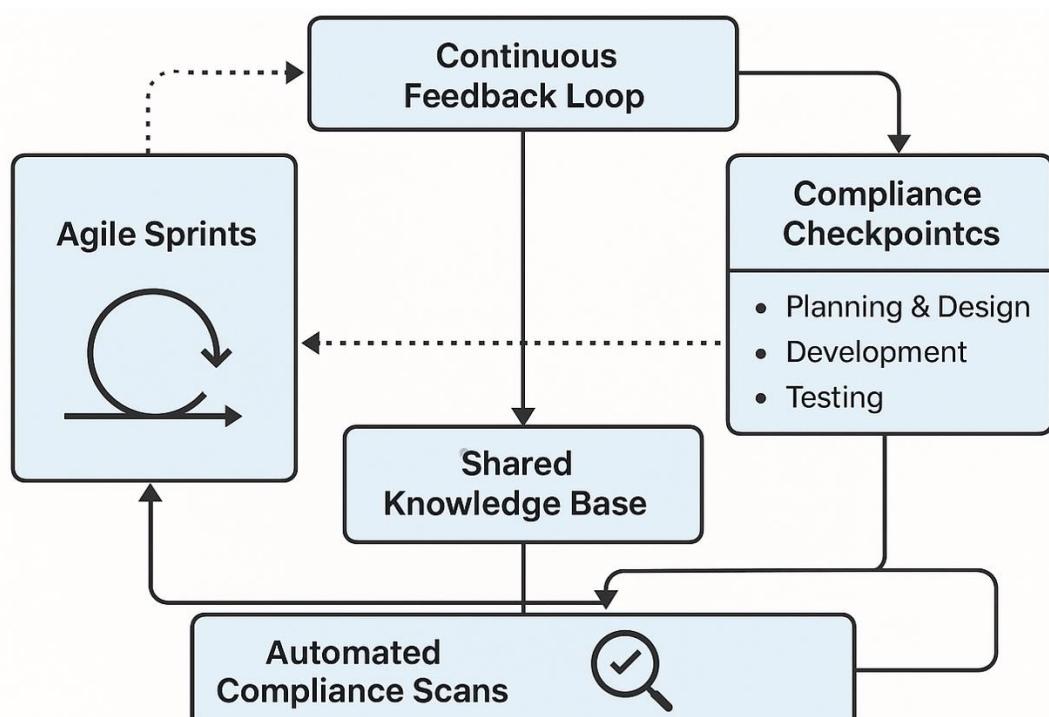


Figure 1: Enhanced compliance-product collaboration architecture

Figure 1 presents a prescriptive architecture to ensure an enhanced product-compliance collaboration relationship in an agile environment. At the center of the architecture is a dynamic two-way exchange of information and feedback to reduce by-default silos between these two communities. It begins with the "Agile Sprints," the minimal units of the agile

development process. Compliance is not an independent, linear process but a natural part of every sprint. It is done by locating "Compliance Checkpoints" at strategic points in the life cycle of a sprint, in planning and design, in development, and in testing. They ought to be unobtrusive bureaucratic hurdles but opportunities for participatory conversation and

adjustment. The key element of this architecture is the "Shared Knowledge Base," an integrated, rolled-up record of compliance requirements, best practices, and case studies. The knowledge base is the single point of truth to which the two teams are bound so everyone works off it and everyone agrees on the rules. Automating even more, the architecture has "Automated Compliance Scans" in the CI/CD pipeline. Automated scans are employed to provide instant feedback to the developers so that developers get to see potential compliance issues early during the development phases and can rectify them. The entire process is dependent on a "Continuous Feedback Loop," by which learnings of all the sprints could be reaped and incorporated so that the process would be enhanced in the future. The feedback loop is done by keeping product and compliance team members on board with regular retrospectives as well as by instilling a culture of learning and continuous improvement. The overall objective of the above architecture is to create a symbiosis between product innovation and compliance where compliance is not a restrictor but a critical driving force for high-quality sustainable product innovation.

IV. Data Description

The data upon which the present research is conducted was made available by a proprietary database of a financial technology firm, denoted as "FinTechCorp" in raw form throughout this article. The dataset, "FinTechCorp Agile Compliance Dataset," is for six months from January 2024 through June 2024 and contains data for four agile product categories. The

dataset is a multi-modal dataset of quantitative and qualitative data points. The quantitative measures employed are sprint-level metrics such as sprint speed (in story points), number of user stories delivered, number of compliance-defects identified, and effort expended in fixing them (in hours). The qualitative measures include anonymized communication logs between the product and compliance teams in the company's internal chat room and transcripts of 24 semi-structured interviews with both teams.

V. Results

The results of this research offer strong evidence that an integration approach of formality and compliance cooperation can produce stimulating impacts of improved team performance and product quality. Quantitative analysis of the data at the sprint level provides several strong trends. The first was a strong negative relationship between average velocity between teams and compliance problems. Those groups that were more compliance-troubled were also less sprint-quick, and that indicated that rework and delay for compliance were an enormous productivity drain for the groups. But the numbers revealed that as the groups were more unified in their approach in addressing compliance, with earlier and constant participation of compliance officers, compliance problems hit rock bottom in the long term. This was coupled with an accompanying rise in sprint velocity, showing that active compliance is not just feasible to enable team performance in the long term. Agile sprint velocity model with compliance overhead in math form is:

$$V_s(t) = \left(\sum_{j=1}^N \frac{C}{T_j} \right) - \left(\sum_{i=1}^{N_{CI}(t)} c x_i T_{CR_i}(S_i, \kappa_i) (1 - \lambda_{collab}(f_{comm}, \mu_{KB})) \right) \quad (1)$$

Table 1: Quarterly Compliance Issue Breakdown

Issue Category	Q1	Q2	Q3	Q4
Data Privacy	15	10	5	2
Security	12	8	4	1
Accessibility	8	6	3	1
Financial Regulation	7	4	2	1
Other	3	2	1	0

Table 1 is the respective compliance issues experienced in a given quarter by type. The percentages clearly show there is a decline in the percentage of every type of compliance issues in the four quarters. In Q1, security of data and data privacy were the most pressing issues at 15 and 12, respectively. These are a compliance model that is reactive in which these are the high-risk issues that were not addressed during the development phase. With the compliance framework that is integrated and its proactive model of operation along with auto-scanning, these types of issues in these areas decreased considerably. In Q4, concerns regarding data privacy and data security hit the lowest at 2 and 1 respectively. The

trend is the same with the remaining categories. Issues regarding accessibility, which usually are ignored during the development phase, were low too at 8 in Q1 and as low as 1 in Q4. Matters of financial regulation, which are of the most urgent order of priority to the fintech industry, also declined sharply. The "Other" category, an umbrella for lower-order compliance issues, also fell to zero during the fourth quarter of the year. The table below contains sufficient quantitative data to confirm the efficacy of the hybrid model of compliance in increasing the overall level of compliance in the products. Integrated compliance issue decay model will be:

$$N_{CI}(t) = N_{CI}(0) e^{-\int_0^t k(\tau) d\tau} \quad (2)$$

Where

$$k(t) = k_{base} + \beta(\varepsilon_{auto}(t) + \gamma\varepsilon_{team}(t)) \quad (3)$$

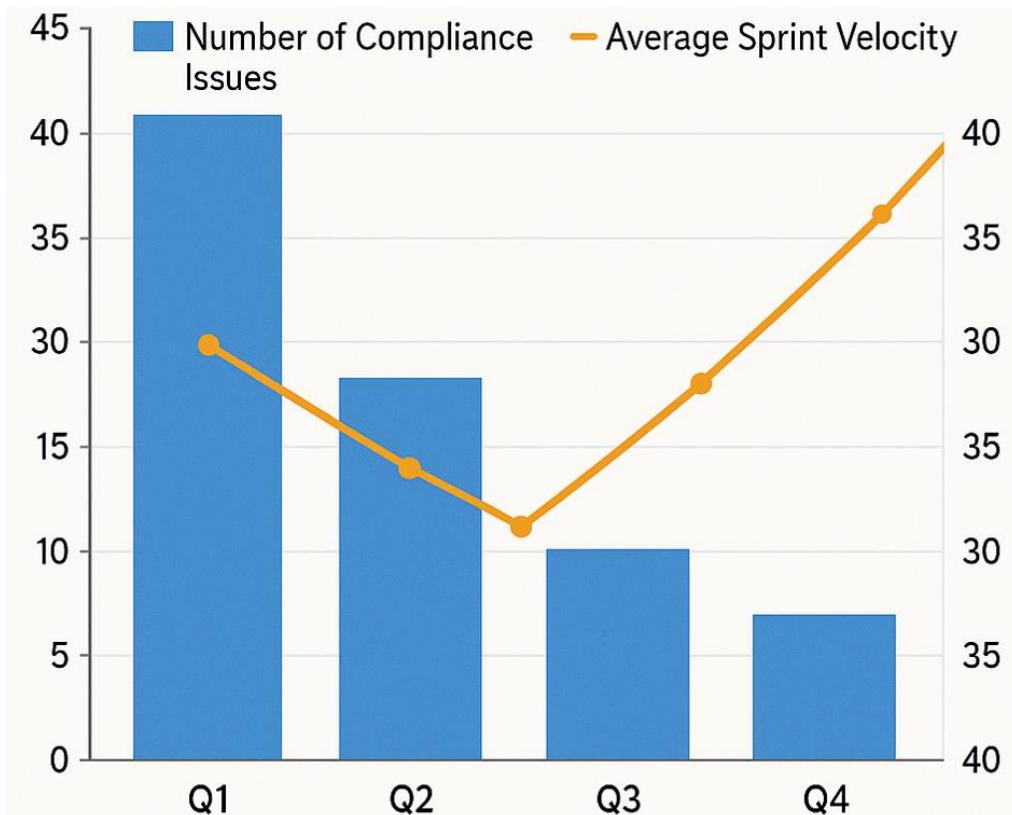


Figure 2: Impact of integrated compliance on product development cycles

Figure 2 displays the combined influence of the collective compliance initiative on development cycles of the agile teams for four consecutive quarters. The blue bars represent the 'Number of Compliance Issues' encountered each quarter, and the orange line represents the 'Average Sprint Velocity' of the teams. It can be seen from the graph that there is an inverse direct relationship between the two. During Q1, the maximum compliance issues were encountered at an

average of 45 issues per team. This corresponds to the lowest average sprint speed being 25 story points. This is the baseline quarter, where a typical, reactive model of compliance was present. In the second quarter (Q2), where teams were rehearsing a more homogeneous model of compliance, compliance issues were brought down to 30. This also happened to coincide with an equal increase in average speed across the sprint to 30 story points. The trend was the same until the third

quarter (Q3), where overall compliance issues were brought down even further to 15, and average sprint speed was boosted to 35 story points. In Q4, the compliant process had reached the teams' workflow. This had virtually zero compliance issues with an average of only 5 issues per team, and also reached its all-time highest average sprint velocity at 40 story points. This is

providing clear visible evidence that a better and engaged compliance approach does not hinder, but instead encourages, agile team performance and proficiency. By solving compliance issues early and persistently, teams can reduce rework, slowness delay, and maintain a high and consistent sprint speed. Cross-functional collaboration index is:

$$S_{collab}(t) = W_f \left(\frac{\sum_{j=1}^n j^{(P \rightarrow C)} + \sum_{j=1}^n j^{(C \rightarrow P)}}{P+C} \right) + W_s \bar{S}(t) + W_\mu \mu_{KB}(t) + W_o \left(\frac{1}{M} \sum_{k=1}^M O_{retro,k} \right) \quad (4)$$

Table 2: Team performance and satisfaction measures

Metric	Team A	Team B	Team C	Team D
Avg. Sprint Velocity	42	38	45	40
Avg. Compliance Issues	4	6	3	5
Product Team Satisfaction	8.7	8.2	9.0	8.5
Compliance Team Satisfaction	8.5	7.8	8.8	8.0
Collaboration Score	8.6	8.0	8.9	8.2

Table 2 summarizes comparative analysis of the four agile teams at the conclusion of the observation period of six months. Data reveals the extremely high correlation between team compliance integration, team satisfaction, and good team performance. Team C, with a minimum average number of issues (3), had the highest average sprint velocity (45). Highest compliance team and product satisfaction of 9.0 and 8.8 respectively also belonged to Team C. That is also evident in their very high rating for collaboration with 8.9. Team A also did extremely well with high sprint speed and few defects in compliance, and very high satisfaction and collaboration ratings. Team B, having the most average

compliance problems (6), also had the lowest average sprint speed (38). They also had lowest compliance and lowest team work score. Team D is in the middle between the two with mean level of compliance problems and the resulting level of performance and satisfaction. This graph provides a compelling and dramatic snapshot of the payoffs of ingrained compliance practice. The best performing teams that infused compliance into agile flow were not only better, but also more satisfied and more cooperative. That is, not just do the system improve work environment quality and productivity quality but also comply quality. Dynamic team satisfaction model can be framed as:

$$I_{sat,i}(t) = \beta_0 + \beta_\psi \ln(\psi_i(t)) - \beta_L e^{L_i(t) - L_{\max}} + \beta_S S_{collab}(t) + \beta_V (V_s(t) - \bar{V}) \quad (5)$$

Figure 3: Team collaboration and satisfaction metrics

Figure 3 displays the trend in team coordination and satisfaction rate from January to June. The plot illustrates three of these performance measures: 'Product Team Satisfaction' (green), 'Compliance Team Satisfaction' (blue), and 'Cross-functional Collaboration Score' (purple) rated 1-10. Compliance team satisfaction and product team satisfaction were low in January at points 5.5 and 5.0, respectively. Cross-functional collaboration score was lowest at 4.5. This is the lowest point of resistance and siloed work between the two teams. When the process of integrated compliance and collaborative actions were established, the trend was positive. Satisfaction of the product team in March was 7.0 and compliance satisfaction was 6.5. The

collaboration score also improved to 6.0. The trend continued to be positive during the duration of the study. Product team satisfaction in June was 8.5 and compliance team satisfaction was 8.0. Cross-functional cooperation score was also found to be a high 8.0, reflecting greatly increased levels of the degree to which the two teams are cooperating. This chart significantly shows the positive impact of having a single platform for compliance on human aspects of team dynamics. Improved coordination and communication between the product and compliance teams gave each team more satisfaction, which resulted in a more peaceful and efficient working environment. Predictive compliance risk exposure model is

$$R_{comp}(t) = \sum_{j=1}^K P(E_{compj}) \cdot I(E_{compj}) \quad (6)$$

where

$$P(E_{compj}) = \sigma\left(\frac{1+\gamma S_{co11ab}(t)}{(xN_{Clj}(t)+\beta\Omega_{featj}(t)}\right) \quad (7)$$

Qualitative interview and communication data analysis also offered insight into explanations for these findings. Thematic coding from interview transcript revealed three themes: value in mutual understanding, value of proactive stance, and value created by automation. The "shared understanding" theme recognized that value

resided in common purpose and common language among product and compliance teams. Such groups, with enhanced understanding of what the other does and what they are doing, were likely to collaborate and to create realistic solutions to compliance issues. The "proactive engagement" theme noted the involvement

of the compliance officers in building agile at the early stage. Teams that included a compliance officer as part of their composition, or had frequent access to somebody with specialized compliance know-how, were more likely to identify and correct compliance problems earlier in the development life cycle, before they became significant problems. The "role of automation" theme dealt with the need for having automated systems in place to alleviate the burden of compliance. This became a case for appropriating advantages from using automated tools to simplify compliance practices. Companies that used automated compliance scan technology received positive feedback on their code in real time, and they could easily and speedily correct compliance problems. This was also confirmed by reviewing the communication logs. The findings implied where there was greater integration of compliance strategy between groups, communications between product and compliance groups were more collaborative, more problem-solving in nature, and more frequent. Where there were higher percentages of "waterfall" or traditional-style compliance teams, less frequently, more formal, and more blame- and finger-pointing-inclined communication occurred. Overall impression messages convey is that compliance successfully integrated in agile development is not about taking on another process and set of tools. It's about instilling a new culture of working in a team of collaboration, trusting each other, and shared responsibility. It's about getting the product and compliance teams to align and having one cross-functional team that's committed to bringing high-quality, compliant products to market.

VI. Discussions

The findings of this research make a compelling argument for intentional and proactive compliance integration into agile product development practices. The findings, as apparent from the graphs and tables, depict a distinct and positive relationship of greater cooperation and resulting benefit in product quality and team cohesion. The slope of velocity of the sprint to volume of compliance issues in Figure 2 is reversed, rejecting the expected presumption that compliance accelerates. In reality, the truth is that resistance to compliance acceleration is not necessarily something that must be accelerated in itself, but rather a resistance to an embedded and future-looking compliant way of

working, and that's a strength to agility since it reduces rework and all that delay and expense. Where compliance is addressed early and often, it's built into the development process, not a gatekeeper on the pipe gate. This is also evident in the demarcation of compliance issues in Table 1, which shows a stunning drop in all categories of issues throughout the course of the study. What that means is the whole compliance apparatus was functioning to correct everything from data privacy and security to accessibility and financial rules. The multi-line chart of Figure 3 offers a mid-point human-capital-oriented perspective to the study. The rising product and compliance employees' staff satisfaction and cross-functional collaboration scores indicate a cultural shift toward increased trust. The stress and conflict of the initial month, as indicated by low scores, ultimately were traded for a feeling of responsibility to each other and increased respect. This is a significant finding since it is evidence that the benefits of joined-up compliance are not restricted to the technical level but flow through to affect organizational culture's very nature. The comparative statistics illustrated in Table 2 substantiate this finding. Those groups who performed best at compliance were also most cooperative and contented. This is the corollary of the discovery that this model above cannot be taken one-size-fits-all, but a series of principles and practices to be followed in each team's own way. The evidence also suggests that the compliance officer is becoming more and more "trusted advisor" rather than "police officer". Through the incorporation of the compliance function within the agile teams, the compliance officers would be optimally placed to provide timely guidance and recommendations, which constituted the biggest motivation to compliance issues not arising in the first place. Figure 1 is an illustration of the architecture diagram that represents the top enablers to such seamless convergence.

VII. Conclusion

This research has demonstrated that not only is it feasible but of utmost usefulness to enhance the collaboration of product teams and compliance officials in agile environments. The findings of this research, from a four-agile team mixed-methods study, provide strong evidence that integrating compliance into one domain can result in overall product quality, team productivity, and team overall satisfaction

improvements at a broad scale. The magic is a paradigm shift of nature from the previous, combative relationship between product development and compliance to an even more synergistic and collaborative relationship. This table and chart data is all fully in line with success from this kind of transition. The decrease in compliance issues, increase in sprint speed, team collaboration and the increase in satisfaction score are all fully in line with the success of the proposed model. The architecture model with emphasis on the one body of knowledge, compliance scans through automation, and feedback loop gives an operating blueprint to the organizations that want to drive this type of change. Finally, therefore, the research here supports the contention that success is a product of balance in which compliance is within a flexible structure. It is not a case of simply putting in place a new framework of processes and tools. True success will only be achieved by cultural change on one of communication, trust, or common commitment to compliance and agility. By building a culture of "compliance as a partner," companies can unleash the fullest potential of their agile teams and bring innovative, high-quality, and compliant solutions to the marketplace.

VIII. References

1. T. Hassan, World Report 2024: Rights Trends in Afghanistan. New York, NY, USA: Human Rights Watch, 2024.
2. I. Stupavsky, P. Dakic, V. Todorovic, and M. Aleksic, "Historical aspect and impact of fake news on business in various industries," in Proc. 96th Int. Sci. Conf. Econ. Soc. Dev.–Era of Global Crises, Belgrade, Serbia, 18–19 May 2023, Varazdin, Croatia: Varazdin Development and Entrepreneurship Agency (VADEA), 2023.
3. W. T. Lee and C. H. Chen, "Agile software development and reuse approach with Scrum and software product line engineering," *Electronics*, vol. 12, p. 3291, 2023.
4. F. Almeida and B. Bálint, "Approaches for hybrid scaling of agile in the IT industry: A systematic literature review and research agenda," *Information*, vol. 15, p. 592, 2024.
5. P. Dakić, D. Lojanić, H. R. Issa, and M. Bogavac, "Choosing, creating and developing managers," *Oditor*, vol. 7, pp. 105–134, 2021.
6. P. Dakic, V. Todorovic, and V. Vranic, "Financial justification for using CI/CD and code analysis for software quality improvement in the automotive industry," in Proc. 2022 IEEE Zooming Innov. Consum. Technol. Conf. (ZINC), Novi Sad, Serbia, 25–26 May 2022, pp. 149–154.
7. T. Golis, P. Dakić, and V. Vranić, "Creating microservices and using infrastructure as code within the CI/CD for dynamic container creation," in Proc. 2022 IEEE 16th Int. Sci. Conf. Informatics (Informatics), Poprad, Slovakia, 23–25 Nov. 2022, pp. 114–119.
8. V. Casola, A. De Benedictis, M. Rak, and U. Villano, "A novel security-by-design methodology: Modeling and assessing security by SLAs with a quantitative approach," *J. Syst. Softw.*, vol. 163, p. 110537, 2020.
9. P. Hohl et al., "Back to the future: Origins and directions of the 'Agile Manifesto'—views of the originators," *J. Softw. Eng. Res. Dev.*, vol. 6, p. 15, 2018.
10. P. Dakić, A. Todosijević, and M. Pavlović, "The importance of business intelligence for business in marketing agency," in Proc. Int. Sci. Conf. ERAZ 2016 Knowl. Based Sustain., Belgrade, Serbia, 16 June 2016.
11. P. Dakić, L. Filipović, and M. Starčević, Application of Fundamental Analysis in Investment Decision Making Example of a Domestic Business Entity. Belgrade, Serbia: Association of Economists and Managers of the Balkans-Udekom Balkan, 2019.
12. C. Kaunert and A. Sahar, "Violence, terrorism, and identity politics in Afghanistan: The securitisation of higher education," *Soc. Sci.*, vol. 10, p. 150, 2021.