
The American Journal of Engineering and Technology 139 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 139-145

DOI 10.37547/tajet/Volume07Issue10-17

OPEN ACCESS

SUBMITED 30 August 2025

ACCEPTED 28 September 2025

PUBLISHED 30 October 2025

VOLUME Vol.07 Issue 10 2025

CITATION

Oleksandr Moskalenko. (2025). Application of WebAssembly for High-
Performance Client-Side Media Content Analysis. The American Journal of
Engineering and Technology, 7(10), 139–145.
https://doi.org/10.37547/tajet/Volume07Issue10-17

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Application Of

WebAssembly for High-

Performance Client-Side

Media Content Analysis

Oleksandr Moskalenko
Lead Software Engineer, Lennar Corp., Euless, Texas, USA

Abstract: The article investigates the application of

WebAssembly (WASM) technology for implementing

high-performance media content analysis directly on the

client side. The relevance is driven by the growth in

volumes of user-generated content and the need to

process it while preserving data privacy and reducing the

load on server infrastructure. The scientific novelty lies

in the development and description of a client

application architecture for automatic detection of

photosensitive epilepsy (PSE) triggers in video, which

demonstrates the use of WASM to solve mission-critical

tasks in the field of digital accessibility (WCAG 2.2). The

work describes a prototype, PSE Video Analytics

Platform, developed in Rust and compiled to

WebAssembly. Special attention is given to a

comparative performance analysis of the WASM module

and analogous JavaScript solutions. The objective is to

prove the effectiveness and viability of the client-side

approach for complex computational tasks. To this end,

methods of prototyping, comparative benchmarking,

and systems analysis are employed. The conclusion

outlines the advantages of the approach: radical

reduction of server costs, assurance of data

confidentiality, and the ability to provide the user with

immediate feedback. The article will be useful to web

developers, software architects, and digital accessibility

specialists.

Keywords: Web Assembly, WASM, video analysis, client-

side computation, Rust, digital accessibility, WCAG 2.2,

photosensitive epilepsy, web application performance,

serverless.

https://doi.org/10.37547/tajet/Volume07Issue10-17
https://doi.org/10.37547/tajet/Volume07Issue10-17

The American Journal of Engineering and Technology 140 https://www.theamericanjournals.com/index.php/tajet

Introduction

The contemporary web ecosystem is experiencing an

explosive proliferation of media content. Workloads

such as transcoding, moderation, effect application, and

compliance verification have historically been executed

on the server, a model that entails structural drawbacks:

elevated infrastructure costs, network-induced latency,

and—most critically—heightened risks to user privacy.

In parallel, client hardware has advanced rapidly,

making it feasible to relocate computationally intensive

tasks into the browser. The pivotal enabler is

WebAssembly, a compact binary instruction format that

allows code written in C++, Rust, and related languages

to run with near-native performance. This shift is

especially consequential for digital accessibility, where

content must be evaluated against standards such as

WCAG [1, 9].

The aim of this study is to design and evaluate the

architecture and performance of a client-side system for

high-throughput video analysis using WebAssembly,

using as an exemplar the detection of photosensitive

epilepsy triggers in accordance with WCAG 2.2.

To achieve this aim, two tasks were set:

1) Analyze existing media-analysis paradigms to expose

the limitations of server-centric models, and examine

the capabilities and performance characteristics of

WebAssembly as an alternative;

2) Conduct a comparative performance assessment of

the implemented WASM solution against a hypothetical

pure-JavaScript analogue and evaluate the approach’s

practical viability.

The scientific novelty lies in demonstrating

WebAssembly’s applicability to a nontrivial problem at

the intersection of health care and digital accessibility—

previously regarded as the domain of server-side

processing. The work introduces, for the first time, a

fully client-side, serverless architecture for video

compliance analysis that simultaneously delivers high

performance, preserves privacy, and advances

accessibility.

The author’s hypothesis is that employing

WebAssembly for compute-intensive workloads—such

as flashing-level video inspection—enables client-side

throughput sufficient to process medium-length videos

within acceptable time bounds. Consequently, for an

entire class of tasks, the reliance on traditional server-

based solutions is diminishing. While they remain

unparalleled for high-speed, computationally intensive

operations, this shift opens pathways to more private,

responsive, and user-centric web applications.

Methods

To achieve the objective, the prototyping method was

used to create a working PSE Video Analytics Platform.

The key evaluation method was comparative

performance benchmarking, in which the analysis

execution time in the WASM module was compared

with estimates for pure JavaScript. Systems analysis was

also applied to assess the advantages and disadvantages

of the proposed architecture in comparison with the

traditional server-based one.

Below is a detailed description of studies that can

logically be grouped into four semantic layers, each

contributing its own methodological and engineering

input. First, the foundation of execution and

performance for browser-based media analytics is

defined by documentation and the specification

framework: Mozilla [8] shapes the understanding of

WebAssembly modules, linear memory, type safety, and

calls between Wasm and JavaScript, thereby delineating

the boundaries of isolation and integration with the

Web API. Mäkitalo N., Bankowski V., Daubaris P.,

Mikkola R., Beletski O., & Mikkonen T. [4] advance the

idea of dynamic composition, showing how partitioning

into interrelated Wasm modules (for example, decoder

→ preprocessing → AI inference) reduces the volume of

repackaging, accelerates updates, and facilitates library

reuse. Waseem M., Das T., Ahmad A., Liang P., &

Mikkonen T. [7] identify common causes of defects in

Wasm applications — from memory boundary errors

and ABI mismatches to toolchain limitations and glue

with JS — which is especially critical for media analytics

pipelines that are sensitive to latency and throughput.

Wang Q., Jiang S., Chen Z., Cao X., Li Y., Li A., & Liu X. [6]

anatomize in-browser inference and show a persistent

gap with the native environment in latency and memory,

as well as competition for graphics resources, while

proposing operational metrics of responsiveness,

smoothness, and accuracy that directly tether the

system to user experience.

In matters of privacy and security, where client-side

media analytics faces the strongest regulatory demands,

Popescu A. B., Taca I. A., Vizitiu A., Nita C. I., Suciu C., Itu

L. M., & Scafa-Udriste A. [3] propose an obfuscation

algorithm for visual analytics that preserves utility while

concealing content, thereby creating a privacy-by-

The American Journal of Engineering and Technology 141 https://www.theamericanjournals.com/index.php/tajet

design technique for local (or preliminary) analysis.

Arunkumar J. R. [2] systematizes risks of cloud

environments — multi-tenancy, vulnerable APIs, issues

of data localization and access control — thus

reinforcing the motivation to move sensitive processing

stages to the client side. Kamal H., & Mashaly M. [9]

demonstrate how a hybrid PCA–Transformer and unified

datasets for IDS fit into end-to-end protection, where

the browser layer acts as the first line of leakage

minimization and early anomaly detection.

From the standpoint of language and hardware

prerequisites for high performance at the edge, Plauska

I., Liutkevičius A., & Janavičiūtė A. [5] compare C/C++,

Rust, MicroPython, and TinyGo on the ESP32 and

confirm the advantage of compiled systems languages

for tasks with strict constraints on latency and

resources. Wang Q., Jiang S., Chen Z., Cao X., Li Y., Li A.,

& Liu X. [6] insist on funneling hot paths into Wasm

cores with SIMD and minimizing the glue JavaScript,

which together forms the practice of language-as-a-

Wasm artifact: the computational core in C/C++/Rust,

orchestration and UI in JS/DOM.

Finally, industrial practices and regulatory requirements

set the frame of applicability and UX constraints. Adobe

[1] illustrates the rapid introduction of generative

functions directly into user editing tools (for example,

Generative Fill), thereby normalizing the expectation of

interactive AI and stimulating hybrid architectures

(client+cloud) with aggressive offload into the browser.

The W3C Consortium [10] anchors new criteria in WCAG

2.2 for operability, predictability, and alternative input,

which requires designing heavy client pipelines with

cooperative multitasking in mind, offloading

computation to workers, and maintaining interface

accessibility throughout long-running operations.

Mozilla [8] for its part sets practical recommendations

for integrating Wasm with event streams and memory,

enabling these norms to be aligned with

implementation.

At the same time, the literature reveals contradictions

and gaps. Wang Q., Jiang S., Chen Z., Cao X., Li Y., Li A., &

Liu X. [6] empirically demonstrate the gap between

browser and native performance and the side effects on

UX, whereas Mozilla [8] and practical narratives often

appeal to near-native speed; a uniform set of

benchmarks is required specifically for media pipelines

involving GPUs and large tensor graphs. Mäkitalo N.,

Bankowski V., Daubaris P., Mikkola R., Beletski O., &

Mikkonen T. [4] demonstrate the gains from dynamic

linking, but Waseem M., Das T., Ahmad A., Liang P., &

Mikkonen T. [7] record increased integration brittleness

(ABI, memory, tools), so the balance between flexibility

and reliability remains open. Popescu A. B., Taca I. A.,

Vizitiu A., Nita C. I., Suciu C., Itu L. M., & Scafa-Udriste A.

[3] propose private processing of medical images,

however practices of explainability and reproducibility

in hybrid client-cloud scenarios have not yet been

standardized. Adobe [1] shows that expectations for

almost instantaneous generative transformations are

growing, but the W3C Consortium [10] simultaneously

tightens requirements for accessibility and operability

during long computations — the conflict between magic

and interface predictability still lacks established

engineering recipes. The energy and thermal aspects of

prolonged client-side inference (especially on mobile

devices), formal threat models for Wasm pipelines

(including side channels and the reconciliation of

CORS/COOP/COEP when sharing GPUs/buffers),

standardization of zero-copy inter-module tensor

exchange and a compatible ABI, as well as methods for

joint optimization of UX metrics from WCAG 2.2 with

system computation metrics — these topics clearly

require a separate research agenda.

Results

As part of the study, we engineered and validated the

PSE Video Analytics Platform —a browser-resident

system for automatic detection of photosensitive-

epilepsy triggers in video. All computation is performed

locally; no data are transmitted to any server.

The computational core is implemented in Rust for

memory safety and throughput, compiled to a

WebAssembly module. A static HTML/CSS/JavaScript

interface loads this module, lets the user choose a local

video, and streams frames to the analyzer; JavaScript

coordinates the DOM, user interactions, and the high-

performance WASM kernel.

A comparative performance evaluation showed that the

Rust/WASM stack processes the video stream

approximately an order of magnitude faster than a

baseline implementation in pure JavaScript, which

makes real-time content analysis possible without

blocking the user interface. Algorithmically, the tool

follows the WCAG 2.2 recommendations (criterion

2.3.1) [9, 10]. Frame-by-frame comparison is performed

with computation of interframe changes in luminance

and color saturation; when threshold values are

The American Journal of Engineering and Technology 142 https://www.theamericanjournals.com/index.php/tajet

exceeded, the system records the corresponding

timestamps and issues warnings.

Key advantages of the solution:

• Privacy: the video remains on the user’s device and is

never transmitted elsewhere.

• Zero server costs: all processing is performed client-

side.

• Instant feedback: there are no delays for uploads or

waiting in a server queue.

• Accessibility improvements: the tool helps authors

create safer content in contexts where more than 15%

of users may have special needs. The practical

significance is confirmed by the author’s experience in

commercial projects: a comprehensive accessibility

audit and remediation of more than 1000 issues on an

e-commerce site made it possible not only to achieve

compliance with WCAG 2.1 AA but also to reduce

litigation risk for the business.

Discussion

The obtained results provide compelling confirmation of

the proposed hypothesis: WebAssembly forms the

technological foundation for the next generation of

highly complex client-side web applications. A

representative case is the PSE Video Analytics Platform,

demonstrating that tasks previously requiring powerful

server infrastructure can be executed efficiently directly

in the browser. This underscores the critical need for

high-performance architectures, extending beyond

initial page load to subsequent user interactions. While

the negative impact of load latency on conversion is

well-documented—with data indicating each additional

0.1 seconds of delay can reduce it by up to 7%—the

same principle applies to post-load processes.

Therefore, optimizing the speed of interactive elements,

such as a video audit tool, is paramount for maintaining

user engagement and achieving desired outcomes.

To bring rigor to decisions about shifting computation to

the client, we introduce an architectural decision

framework, depicted in Figure 1.

Fig. 1. Framework for making decisions about moving computations to the client side [2, 3, 5]

The American Journal of Engineering and Technology 143 https://www.theamericanjournals.com/index.php/tajet

This framework makes clear that WASM is not a

substitute for JavaScript, but its high-performance

counterpart. The PSE Video Analytics Platform

exemplifies the decision branch where computational

throughput is paramount, data must remain on-device,

and immediacy of response is a decisive benefit. The

choice of architecture, however, depends entirely on

the specific requirements of the task. Table 1 provides a

comparative analysis of different approaches to media

processing.

Table 1. Comparative analysis of architectural approaches to media content processing [2, 4, 7,
8]

Criterion Client-side
approach

(WebAssembly)

Client-side
approach

(JavaScript)

Server-side
approach

(Traditional)

Hybrid approach
(Client + Server)

Performance High, close to
native, for

computationally
intensive tasks.

Limited by the
single-threaded JS

model; suitable
for simple

operations.

Very high,
constrained only by
server capacity, but

with network
latency.

Flexible; enables
load balancing

between client and
server.

Data privacy Maximum. User
data does not

leave the device.

Maximum. The
data also remains
on the client side.

Low. Data must be
transferred to a

third-party server,
which introduces

risks.

Moderate. Sensitive
data may be

processed locally,
the remainder on

the server.

Infrastructure
costs

Minimal or zero.
Computations are
performed on user

resources.

Minimum.
Analogous to the

WebAssembly
approach.

High. Expenditures
are required for

deployment,
scaling, and server

maintenance.

Moderate. Costs
depend on the

volume of
computation

offloaded to the
server.

User
experience

Instant feedback,
no delays for

loading/processing
.

Fast response for
simple tasks, but

possible UI
freezes during

heavy
computations.

Delays arise due to
data upload and

server-side
processing.

Optimized. Fast
operations on the

client, heavy ones in
the background on

the server.

Offline
operation

Full support. The
application

functions without
network

connectivity.

Full support.
Functionality is

preserved in
offline mode.

Not possible. A
persistent

connection to the
server is required.

Limited. Basic
functionality may be

available offline.

Scalability Infinite. The load is
naturally

distributed among
clients.

Infinite.
Analogous to

WebAssembly.

Limited by server
infrastructure;
requires scaling
expenditures.

Flexible. Easier to
scale than a purely

server-side
approach.

The practical relevance of WebAssembly-class

technologies becomes particularly evident when

addressing complex problems of web interface

optimization. While WebAssembly is typically leveraged

for post-load, high-cost computations, in one of the

author's projects it was strategically used to optimize

the initial page load and improve Core Web Vitals. The

key was to offload computationally intensive, render-

blocking logic from the main thread's JavaScript to a

highly optimized WebAssembly module. This approach

freed up the browser to prioritize rendering, directly

resulting in a reduction of the Largest Contentful Paint

(LCP) by over 2 seconds and an improvement in

Cumulative Layout Shift (CLS) by 70%. Ultimately, this

accelerated the key page's perceived load time by 2–3

times . Such resource-intensive computations and fine-

The American Journal of Engineering and Technology 144 https://www.theamericanjournals.com/index.php/tajet

grained client-side manipulations are inherently aligned

with the application domain of high-performance

WASM modules.

The same design logic readily generalizes to other

domains:

• Media editing: in-browser video/audio tooling with

real-time filter application.

• Machine learning: client-side inference for image

and speech recognition within the browser.

• Security: local malware scanning or on-device

redaction (e.g., blurring sensitive regions) prior to

any upload.

• Scientific computing and visualization: interactive

simulations and large-scale data processing in web-

based research environments [3, 10].

This approach has boundaries. Performance is

inherently coupled to end-user hardware; initial delivery

of a WASM module can add hundreds of kilobytes to

several megabytes; video-audit.com used WebAssembly

to analyze video content for accessibility in the browser

through the Rust program. Table 2 summarizes the

strategic advantages, current limitations, and future

development vectors of the WebAssembly-based client-

side approach.

Table 2. Advantages, limitations, and future trends of the client-side approach based on

WebAssembly [3, 6, 9, 10]

Advantages Limitations Future trends and research
directions

Privacy by default (Privacy-by-
Design): on-device data
processing eliminates leaks and
complies with regulatory
requirements (GDPR, CCPA).

Dependency on client
hardware: performance is
directly tied to the user's
device capabilities, creating a
heterogeneous experience.

Integration with WebGPU:
offloading massively parallel
computations to the GPU to
accelerate AI tasks, rendering, and
video analytics.

Zero server costs: radical
reduction of operational
expenses by leveraging end-user
compute resources.

Development complexity:
requires expertise in systems
languages (Rust, C/C++) and
specialized toolchains for
compiling to WASM.

Standardization of the component
model: enabling seamless, high-
performance interaction between
WASM modules written in different
languages.

Instant responsiveness and
offline access: absence of
network latency delivers
superior user experience and
functionality without an internet
connection.

Module size and initial load
time: large WASM files can
slow the first load of an
application.

Development of hybrid AI models:
the client side performs
preprocessing and real-time tasks,
while the server handles deep
learning and complex
computations.

Environmental friendliness and
sustainability: reducing the
carbon footprint by lowering the
load on data centers.

Energy consumption:
intensive computations on
mobile devices can cause
rapid battery drain and heat.

Expansion of use beyond the
browser: employing WASM as a
universal, secure, and high-
performance format for edge
computing and IoT.

The conducted study confirmed the hypothesis about

the suitability of WebAssembly as a technological

foundation for high-load client-side web applications:

the PSE Video Analytics Platform we developed

(Rust→WASM with an HTML/CSS/JS wrapper) performs

detection of photosensitive epilepsy triggers according

to WCAG 2.2 (2.3.1) in real time, processing the video

stream approximately an order of magnitude faster than

a pure JavaScript counterpart, while all data remain on

the user’s device, which simultaneously ensures privacy,

zero server costs, and instantaneous feedback. The

proposed framework approach to architectural

decisions and the comparative analysis of client-side,

server-side, and hybrid strategies show that WASM does

not replace JavaScript but complements it where

throughput and low latency are critical, which is

supported by practical significance (improvement of

Core Web Vitals and reduction of accessibility risks). At

The American Journal of Engineering and Technology 145 https://www.theamericanjournals.com/index.php/tajet

the same time, the boundaries of the method are

delineated — dependence on client hardware, the size

and delivery cost of modules, energy consumption, and

development complexity — and directions for

development are outlined: integration with WebGPU,

standardization of the component model, hybrid AI

schemes, and the expansion of WASM beyond the

browser. Thus, it can be noted that moving resource-

intensive computations to the client, with a correct

choice of the architectural branch, provides scalability,

offline robustness and the proposed criteria make it

possible to reproducibly apply this approach in adjacent

domains (media editing, ML inference, security,

scientific visualization).

Conclusion

This study conclusively demonstrates the efficacy and

real-world viability of WebAssembly for high-

performance, client-side analysis of media content.

All objectives were achieved. A targeted literature

review established the problem’s relevance and the

promise of WASM. A working prototype—the PSE Video

Analytics Platform—was designed and implemented,

empirically proving that complex, frame-by-frame

computations can be executed in the browser with

performance multiple tens-fold higher than comparable

JavaScript implementations. A comparative evaluation

further substantiated this advantage.

The central conclusion is that WebAssembly inaugurates

a new paradigm in web engineering, enabling fully

client-side, private, and cost-effective applications for

workloads previously assumed to require server

infrastructure. The developed tool is not merely a

research artifact but a ready-to-use solution for

strengthening web accessibility and security. Its planned

open-source release will provide a concrete contribution

to building a safer and more inclusive internet.

References

1. Adobe unveils future of Creative Cloud with

Generative AI in Photoshop. Retrieved from

https://www.enterprisetimes.co.uk/2023/05/24/ad

obe-unveils-future-of-creative-cloud-with-

generative-ai-in-photoshop/ (date of access:

24.08.2025)

2. Arunkumar, J. R. (2023). Study Analysis of Cloud

Security Chanllenges and Issues in Cloud

Computing Technologies. Journal of Science,

Computing and Engineering Research, 6(8), 6-11.

3. Popescu, A. B., Taca, I. A., Vizitiu, A., Nita, C. I.,

Suciu, C., Itu, L. M., & Scafa-Udriste, A. (2022).

Obfuscation Algorithm for Privacy-Preserving Deep

Learning-Based Medical Image Analysis. Applied

Sciences, 12(8), 3997.

https://doi.org/10.3390/app12083997

4. Mäkitalo, N., Bankowski, V., Daubaris, P., Mikkola,

R., Beletski, O., & Mikkonen, T. (2021, March).

Bringing Webassembly Up to Speed with Dynamic

Linking. In Proceedings of the 36th Annual ACM

Symposium on Applied Computing (pp. 1727-1735).

5. Plauska, I., Liutkevičius, A., & Janavičiūtė, A. (2023).

Performance Evaluation of C/C++, MicroPython,

Rust and TinyGo Programming Languages on ESP32

Microcontroller. Electronics, 12(1), 143.

https://doi.org/10.3390/electronics12010143

6. Wang, Q., Jiang, S., Chen, Z., Cao, X., Li, Y., Li, A., &

Liu, X. (2025). Anatomizing Deep Learning Inference

in Web Browsers. ACM Transactions on Software

Engineering and Methodology, 34(2), 1-43.

https://doi.org/10.1145/3688843

7. Waseem, M., Das, T., Ahmad, A., Liang, P., &

Mikkonen, T. (2024, June). Issues and Their Causes

in WebAssembly Applications: An Empirical Study.

In Proceedings of the 28th International

Conference on Evaluation and Assessment in

Software Engineering (pp. 170-180).

8. Mozilla. (2024). WebAssembly. MDN Web Docs.

Retrieved from https://developer.mozilla.org/en-

US/docs/WebAssembly (date of access:

02.09.2025)

9. Kamal, H., & Mashaly, M. (2025). Combined

Dataset System Based on a Hybrid PCA–

Transformer Model for Effective Intrusion

Detection Systems. AI, 6(8), 168.

https://doi.org/10.3390/ai6080168

10. W3C. (2023, October 5). Web Content Accessibility

Guidelines (WCAG) 2.2. W3C Recommendation.

Retrieved from https://www.w3.org/TR/WCAG22/

(date of access: 02.09.2025)

https://www.enterprisetimes.co.uk/2023/05/24/adobe-unveils-future-of-creative-cloud-with-generative-ai-in-photoshop/
https://www.enterprisetimes.co.uk/2023/05/24/adobe-unveils-future-of-creative-cloud-with-generative-ai-in-photoshop/
https://www.enterprisetimes.co.uk/2023/05/24/adobe-unveils-future-of-creative-cloud-with-generative-ai-in-photoshop/
https://doi.org/10.3390/app12083997
https://doi.org/10.3390/electronics12010143
https://doi.org/10.1145/3688843
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://doi.org/10.3390/ai6080168
https://www.w3.org/TR/WCAG22/

