W
THE USA
!‘(')URNA'I.?

The American Journal of
Engineering and Technology

ISSN 2689-0984 | Open Access

D)

Check for updates

OPEN ACCESS

30 August 2025
28 September 2025
30 October 2025
Vol.07 Issue 10 2025

Oleksandr Moskalenko. (2025). Application of WebAssembly for High-
Performance Client-Side Media Content Analysis. The American Journal of
Engineering and Technology, 7(10), 139-145.
https://doi.org/10.37547/tajet/Volume07Issue10-17

© 2025 Original content from this work may be used under the terms
of the creative common’s attributes 4.0 License.

The American Journal of Engineering and Technology

Original Research
139-145
10.37547/tajet/VolumeO7Issuel0-17

Application Of

WebAssembly for High-
Performance Client-Side
Media Content Analysis

Oleksandr Moskalenko

Lead Software Engineer, Lennar Corp., Euless, Texas, USA

Abstract: The article investigates the application of
WebAssembly (WASM) technology for implementing
high-performance media content analysis directly on the
client side. The relevance is driven by the growth in
volumes of user-generated content and the need to
process it while preserving data privacy and reducing the
load on server infrastructure. The scientific novelty lies
in the development and description of a client
application architecture for automatic detection of
photosensitive epilepsy (PSE) triggers in video, which
demonstrates the use of WASM to solve mission-critical
tasks in the field of digital accessibility (WCAG 2.2). The
work describes a prototype, PSE Video Analytics

Rust and
attention is

Platform, developed in to
WebAssembly.

comparative performance analysis of the WASM module

compiled
Special given to a
and analogous JavaScript solutions. The objective is to
prove the effectiveness and viability of the client-side
approach for complex computational tasks. To this end,
methods of prototyping, comparative benchmarking,
and systems analysis are employed. The conclusion
outlines the advantages of the approach: radical
of of data

confidentiality, and the ability to provide the user with

reduction server costs, assurance
immediate feedback. The article will be useful to web
developers, software architects, and digital accessibility

specialists.

Keywords: Web Assembly, WASM, video analysis, client-
side computation, Rust, digital accessibility, WCAG 2.2,
photosensitive epilepsy, web application performance,
serverless.

https://www.theamericanjournals.com/index.php/tajet

139

https://doi.org/10.37547/tajet/Volume07Issue10-17
https://doi.org/10.37547/tajet/Volume07Issue10-17

Introduction

The contemporary web ecosystem is experiencing an
explosive proliferation of media content. Workloads
such as transcoding, moderation, effect application, and
compliance verification have historically been executed
on the server, a model that entails structural drawbacks:
elevated infrastructure costs, network-induced latency,
and—most critically—heightened risks to user privacy.
In parallel, client hardware has advanced rapidly,
making it feasible to relocate computationally intensive
tasks into the browser. The pivotal enabler is
WebAssembly, a compact binary instruction format that
allows code written in C++, Rust, and related languages
to run with near-native performance. This shift is
especially consequential for digital accessibility, where
content must be evaluated against standards such as

WCAG [1, 9].

The aim of this study is to design and evaluate the
architecture and performance of a client-side system for
high-throughput video analysis using WebAssembly,
using as an exemplar the detection of photosensitive
epilepsy triggers in accordance with WCAG 2.2.

To achieve this aim, two tasks were set:

1) Analyze existing media-analysis paradigms to expose
the limitations of server-centric models, and examine
the capabilities and performance characteristics of
WebAssembly as an alternative;

2) Conduct a comparative performance assessment of
the implemented WASM solution against a hypothetical
pure-JavaScript analogue and evaluate the approach’s
practical viability.

The
WebAssembly’s applicability to a nontrivial problem at

scientific novelty lies in demonstrating
the intersection of health care and digital accessibility—
previously regarded as the domain of server-side
processing. The work introduces, for the first time, a
fully client-side, serverless architecture for video

compliance analysis that simultaneously delivers high

performance, preserves privacy, and advances
accessibility.
The author’'s hypothesis is that employing

WebAssembly for compute-intensive workloads—such
as flashing-level video inspection—enables client-side
throughput sufficient to process medium-length videos
within acceptable time bounds. Consequently, for an
entire class of tasks, the reliance on traditional server-
based solutions is diminishing. While they remain

The American Journal of Engineering and Technology

unparalleled for high-speed, computationally intensive
operations, this shift opens pathways to more private,
responsive, and user-centric web applications.

Methods

To achieve the objective, the prototyping method was
used to create a working PSE Video Analytics Platform.
The
performance benchmarking, in which the analysis

key evaluation method was comparative
execution time in the WASM module was compared
with estimates for pure JavaScript. Systems analysis was
also applied to assess the advantages and disadvantages
of the proposed architecture in comparison with the

traditional server-based one.

Below is a detailed description of studies that can
logically be grouped into four semantic layers, each
contributing its own methodological and engineering
input. First,
performance for browser-based media analytics is

the foundation of execution and
defined by documentation and the specification
framework: Mozilla [8] shapes the understanding of
WebAssembly modules, linear memory, type safety, and
calls between Wasm and JavaScript, thereby delineating
the boundaries of isolation and integration with the
Web API. Makitalo N., Bankowski V., Daubaris P.,
Mikkola R., Beletski O., & Mikkonen T. [4] advance the
idea of dynamic composition, showing how partitioning
into interrelated Wasm modules (for example, decoder
-> preprocessing - Al inference) reduces the volume of
repackaging, accelerates updates, and facilitates library
reuse. Waseem M., Das T., Ahmad A, Liang P., &
Mikkonen T. [7] identify common causes of defects in
Wasm applications — from memory boundary errors
and ABI mismatches to toolchain limitations and glue
with JS — which is especially critical for media analytics
pipelines that are sensitive to latency and throughput.
Wang Q., Jiang S., Chen Z.,, Cao X,, Li Y., Li A,, & Liu X. [6]
anatomize in-browser inference and show a persistent
gap with the native environment in latency and memory,
as well as competition for graphics resources, while
of
smoothness, and accuracy that directly tether the

proposing operational metrics responsiveness,

system to user experience.

In matters of privacy and security, where client-side
media analytics faces the strongest regulatory demands,
Popescu A. B., Taca I. A,, Vizitiu A., Nita C. I., Suciu C,, Itu
L. M., & Scafa-Udriste A.
algorithm for visual analytics that preserves utility while

[3] propose an obfuscation

concealing content, thereby creating a privacy-by-

https://www.theamericanjournals.com/index.php/tajet

140

design technique for local (or preliminary) analysis.
R.
environments — multi-tenancy, vulnerable APIs, issues
of data thus
reinforcing the motivation to move sensitive processing
stages to the client side. Kamal H., & Mashaly M. [9]
demonstrate how a hybrid PCA-Transformer and unified

Arunkumar J. [2] systematizes risks of cloud

localization and access control

datasets for IDS fit into end-to-end protection, where
the browser layer acts as the first line of leakage
minimization and early anomaly detection.

From the standpoint of language and hardware
prerequisites for high performance at the edge, Plauska
., Liutkevicius A., & Janaviciaté A. [5] compare C/C++,
Rust, MicroPython, and TinyGo on the ESP32 and
confirm the advantage of compiled systems languages
for tasks with strict constraints on latency and
resources. Wang Q., Jiang S., Chen Z., Cao X, Li Y., Li A,,
& Liu X.

cores with SIMD and minimizing the glue JavaScript,

[6] insist on funneling hot paths into Wasm

which together forms the practice of language-as-a-
Wasm artifact: the computational core in C/C++/Rust,
orchestration and Ul in JS/DOM.

Finally, industrial practices and regulatory requirements
set the frame of applicability and UX constraints. Adobe
[1] illustrates the rapid introduction of generative
functions directly into user editing tools (for example,
Generative Fill), thereby normalizing the expectation of
interactive Al and stimulating hybrid architectures
(client+cloud) with aggressive offload into the browser.
The W3C Consortium [10] anchors new criteria in WCAG
2.2 for operability, predictability, and alternative input,
which requires designing heavy client pipelines with
cooperative multitasking in mind, offloading
computation to workers, and maintaining interface
accessibility throughout long-running operations.
Mozilla [8] for its part sets practical recommendations
for integrating Wasm with event streams and memory,
these to be aligned with

enabling norms

implementation.

At the same time, the literature reveals contradictions
and gaps. Wang Q., Jiang S., Chen Z., Cao X,, Li Y., LiA,, &
Liu X. [6]
browser and native performance and the side effects on

empirically demonstrate the gap between

UX, whereas Mozilla [8] and practical narratives often

appeal to near-native speed; a uniform set of
benchmarks is required specifically for media pipelines
involving GPUs and large tensor graphs. Makitalo N.,

Bankowski V., Daubaris P., Mikkola R., Beletski O., &

The American Journal of Engineering and Technology

Mikkonen T. [4] demonstrate the gains from dynamic
linking, but Waseem M., Das T., Ahmad A,, Liang P., &
MikkonenT. [7] record increased integration brittleness
(ABI, memory, tools), so the balance between flexibility
and reliability remains open. Popescu A. B., Taca |. A,
Vizitiu A., Nita C. ., Suciu C,, Itu L. M., & Scafa-Udriste A.
[3] propose private processing of medical images,
however practices of explainability and reproducibility
in hybrid client-cloud scenarios have not yet been
standardized. Adobe [1] shows that expectations for
almost instantaneous generative transformations are
growing, but the W3C Consortium [10] simultaneously
tightens requirements for accessibility and operability
during long computations — the conflict between magic
and interface predictability still lacks established
engineering recipes. The energy and thermal aspects of
prolonged client-side inference (especially on mobile
devices), formal threat models for Wasm pipelines
(including side channels and the reconciliation of
CORS/COOP/COEP GPUs/buffers),

standardization of zero-copy inter-module tensor

when sharing
exchange and a compatible ABI, as well as methods for
joint optimization of UX metrics from WCAG 2.2 with
system computation metrics — these topics clearly
require a separate research agenda.

Results

As part of the study, we engineered and validated the
PSE Video Analytics Platform —a browser-resident
system for automatic detection of photosensitive-
epilepsy triggers in video. All computation is performed
locally; no data are transmitted to any server.

The computational core is implemented in Rust for
memory safety and throughput, compiled to a
WebAssembly module. A static HTML/CSS/JavaScript
interface loads this module, lets the user choose a local
video, and streams frames to the analyzer; JavaScript
coordinates the DOM, user interactions, and the high-
performance WASM kernel.

A comparative performance evaluation showed that the
Rust/WASM
approximately an order of magnitude faster than a

stack processes the video stream
baseline implementation in pure JavaScript, which
makes real-time content analysis possible without
blocking the user interface. Algorithmically, the tool
follows the WCAG 2.2 recommendations (criterion
2.3.1) [9, 10]. Frame-by-frame comparison is performed
with computation of interframe changes in luminance

and color saturation; when threshold values are

https://www.theamericanjournals.com/index.php/tajet

141

exceeded, the system records the corresponding

timestamps and issues warnings.
Key advantages of the solution:

¢ Privacy: the video remains on the user’s device and is
never transmitted elsewhere.

e Zero server costs: all processing is performed client-
side.

¢ Instant feedback: there are no delays for uploads or
waiting in a server queue.

e Accessibility improvements: the tool helps authors
create safer content in contexts where more than 15%
of users may have special needs. The practical
significance is confirmed by the author’s experience in
commercial projects: a comprehensive accessibility
audit and remediation of more than 1000 issues on an
e-commerce site made it possible not only to achieve
compliance with WCAG 2.1 AA but also to reduce

litigation risk for the business.

Discussion

The obtained results provide compelling confirmation of
the proposed hypothesis: WebAssembly forms the
technological foundation for the next generation of
highly
representative case is the PSE Video Analytics Platform,

complex client-side web applications. A
demonstrating that tasks previously requiring powerful
server infrastructure can be executed efficiently directly
in the browser. This underscores the critical need for
high-performance architectures, extending beyond
initial page load to subsequent user interactions. While
the negative impact of load latency on conversion is
well-documented—with data indicating each additional
0.1 seconds of delay can reduce it by up to 7%—the
principle applies to post-load processes.

Therefore, optimizing the speed of interactive elements,

same

such as a video audit tool, is paramount for maintaining
user engagement and achieving desired outcomes.

To bring rigor to decisions about shifting computation to
the client, we introduce an architectural decision
framework, depicted in Figure 1.

New computational
problem

No

[Use JavaScript J
f No

Consider a
server solution

No

Consider a
hybrid solution
(server + client)

Do you need near-
native
performance?

Is user data
privacy critical?

Is instant
feedback/offline
work important?

Yes

Yes

Yes

A 4

Leading candidate for
implementation in
WebAssembly

Fig. 1. Framework for making decisions about moving computations to the client side [2, 3, 5]

The American Journal of Engineering and Technology

142

https://www.theamericanjournals.com/index.php/tajet

This framework makes clear that WASM is not a
substitute for JavaScript, but its high-performance
The PSE Video Analytics
exemplifies the decision branch where computational

counterpart. Platform

throughput is paramount, data must remain on-device,

and immediacy of response is a decisive benefit. The
choice of architecture, however, depends entirely on
the specific requirements of the task. Table 1 provides a
comparative analysis of different approaches to media
processing.

Table 1. Comparative analysis of architectural approaches to media content processing [2, 4, 7,

8]
Criterion Client-side Client-side Server-side Hybrid approach
approach approach approach (Client + Server)
(WebAssembly) (JavaScript) (Traditional)
Performance High, close to Limited by the Very high, Flexible; enables
native, for single-threaded JS | constrained only by load balancing
computationally model; suitable | server capacity, but | between client and
intensive tasks. for simple with network server.
operations. latency.
Data privacy Maximum. User Maximum. The Low. Data must be | Moderate. Sensitive
data does not data also remains transferred to a data may be
leave the device. | ontheclient side. | third-party server, processed locally,
which introduces the remainder on
risks. the server.
Infrastructure Minimal or zero. Minimum. High. Expenditures Moderate. Costs
costs Computations are | Analogous to the are required for depend on the
performed on user WebAssembly deployment, volume of
resources. approach. scaling, and server computation
maintenance. offloaded to the
server.
User Instant feedback, | Fastresponse for | Delays arise due to Optimized. Fast
experience no delays for simple tasks, but data upload and operations on the
loading/processing possible Ul server-side client, heavy ones in
freezes during processing. the background on
heavy the server.
computations.
Offline Full support. The Full support. Not possible. A Limited. Basic
operation application Functionality is persistent functionality may be
functions without preserved in connection to the available offline.
network offline mode. server is required.
connectivity.
Scalability Infinite. The load is Infinite. Limited by server Flexible. Easier to
naturally Analogous to infrastructure; scale than a purely
distributed among WebAssembly. requires scaling server-side
clients. expenditures. approach.
The practical relevance of WebAssembly-class blocking logic from the main thread's JavaScript to a
technologies becomes particularly evident when highly optimized WebAssembly module. This approach
addressing complex problems of web interface freed up the browser to prioritize rendering, directly

optimization. While WebAssembly is typically leveraged
for post-load, high-cost computations, in one of the
author's projects it was strategically used to optimize
the initial page load and improve Core Web Vitals. The
key was to offload computationally intensive, render-

The American Journal of Engineering and Technology

resulting in a reduction of the Largest Contentful Paint
(LCP) by over 2 seconds and an improvement in
Cumulative Layout Shift (CLS) by 70%. Ultimately, this
accelerated the key page's perceived load time by 2—3
times . Such resource-intensive computations and fine-

143 https://www.theamericanjournals.com/index.php/tajet

grained client-side manipulations are inherently aligned
with the application domain of high-performance
WASM modules.

The same design logic readily generalizes to other
domains:

e Media editing: in-browser video/audio tooling with
real-time filter application.

e Machine learning: client-side inference for image
and speech recognition within the browser.

e Security: local malware scanning or on-device
redaction (e.g., blurring sensitive regions) prior to

any upload.

e Scientific computing and visualization: interactive
simulations and large-scale data processing in web-
based research environments [3, 10].

This
inherently coupled to end-user hardware; initial delivery

of a WASM module can add hundreds of kilobytes to
several megabytes; video-audit.com used WebAssembly

approach has boundaries. Performance is

to analyze video content for accessibility in the browser
through the Rust program. Table 2 summarizes the
strategic advantages, current limitations, and future
development vectors of the WebAssembly-based client-
side approach.

Table 2. Advantages, limitations, and future trends of the client-side approach based on

WebAssembly [3, 6, 9, 10]

Advantages

Limitations

Future trends and research
directions

Privacy by default (Privacy-by-
Design): on-device data
processing eliminates leaks and
complies with regulatory
requirements (GDPR, CCPA).

Dependency on client
hardware: performance is
directly tied to the user's
device capabilities, creating a
heterogeneous experience.

Integration with WebGPU:
offloading massively parallel
computations to the GPU to
accelerate Al tasks, rendering, and
video analytics.

Zero server costs: radical
reduction of operational
expenses by leveraging end-user
compute resources.

Development complexity:
requires expertise in systems
languages (Rust, C/C++) and
specialized toolchains for
compiling to WASM.

Standardization of the component
model: enabling seamless, high-
performance interaction between
WASM modules written in different
languages.

Instant responsiveness and
offline access: absence of
network latency delivers
superior user experience and
functionality without an internet
connection.

Module size and initial load
time: large WASM files can
slow the first load of an
application.

Development of hybrid Al models:
the client side performs
preprocessing and real-time tasks,
while the server handles deep
learning and complex
computations.

Environmental friendliness and
sustainability: reducing the
carbon footprint by lowering the
load on data centers.

Energy consumption:
intensive computations on
mobile devices can cause
rapid battery drain and heat.

Expansion of use beyond the
browser: employing WASM as a
universal, secure, and high-
performance format for edge
computing and loT.

The conducted study confirmed the hypothesis about
the suitability of WebAssembly as a technological
foundation for high-load client-side web applications:
the PSE Video Analytics Platform we developed
(Rust>WASM with an HTML/CSS/JS wrapper) performs
detection of photosensitive epilepsy triggers according
to WCAG 2.2 (2.3.1) in real time, processing the video
stream approximately an order of magnitude faster than
a pure JavaScript counterpart, while all data remain on

The American Journal of Engineering and Technology

144

the user’s device, which simultaneously ensures privacy,
zero server costs, and instantaneous feedback. The
proposed framework approach to architectural
decisions and the comparative analysis of client-side,
server-side, and hybrid strategies show that WASM does
not replace JavaScript but complements it where
throughput and low latency are critical, which is
supported by practical significance (improvement of

Core Web Vitals and reduction of accessibility risks). At

https://www.theamericanjournals.com/index.php/tajet

the same time, the boundaries of the method are
delineated — dependence on client hardware, the size
and delivery cost of modules, energy consumption, and

and directions for

development complexity
development are outlined: integration with WebGPU,
standardization of the component model, hybrid Al
schemes, and the expansion of WASM beyond the
browser. Thus, it can be noted that moving resource-
intensive computations to the client, with a correct
choice of the architectural branch, provides scalability,
offline robustness and the proposed criteria make it
possible to reproducibly apply this approach in adjacent
domains ML inference,

(media editing, security,

scientific visualization).
Conclusion

This study conclusively demonstrates the efficacy and
high-
performance, client-side analysis of media content.

real-world viability of WebAssembly for

All objectives were achieved. A targeted literature
review established the problem’s relevance and the
promise of WASM. A working prototype—the PSE Video
Analytics Platform—was designed and implemented,
empirically proving that complex, frame-by-frame
computations can be executed in the browser with
performance multiple tens-fold higher than comparable
JavaScript implementations. A comparative evaluation

further substantiated this advantage.

The central conclusion is that WebAssembly inaugurates
a new paradigm in web engineering, enabling fully
client-side, private, and cost-effective applications for
workloads previously assumed to require server
infrastructure. The developed tool is not merely a
research artifact but a ready-to-use solution for
strengthening web accessibility and security. Its planned
open-source release will provide a concrete contribution

to building a safer and more inclusive internet.
References

1. Adobe unveils future of Creative Cloud with
Generative Al in Photoshop. Retrieved from
https://www.enterprisetimes.co.uk/2023/05/24/ad
obe-unveils-future-of-creative-cloud-with-

generative-ai-in-photoshop/ (date of access:
24.08.2025)

2. Arunkumar, J. R. (2023). Study Analysis of Cloud

The American Journal of Engineering and Technology

10.

145

Security Chanllenges and Issues in Cloud
Computing Technologies. Journal of Science,
Computing and Engineering Research, 6(8), 6-11.

Popescu, A. B, Taca, I. A., Vizitiu, A., Nita, C. |.,
Suciu, C., Itu, L. M., & Scafa-Udriste, A. (2022).
Obfuscation Algorithm for Privacy-Preserving Deep
Learning-Based Medical Image Analysis. Applied
Sciences, 12(8), 3997.
https://doi.org/10.3390/app12083997

Makitalo, N., Bankowski, V., Daubaris, P., Mikkola,
R., Beletski, O., & Mikkonen, T. (2021, March).
Bringing Webassembly Up to Speed with Dynamic
Linking. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing (pp. 1727-1735).

Plauska, I., Liutkevicius, A., & Janaviciate, A. (2023).
Performance Evaluation of C/C++, MicroPython,
Rust and TinyGo Programming Languages on ESP32
Microcontroller. Electronics, 12(1), 143.
https://doi.org/10.3390/electronics12010143

Wang, Q., Jiang, S., Chen, Z., Cao, X., Li, Y., Li, A., &
Liu, X. (2025). Anatomizing Deep Learning Inference
in Web Browsers. ACM Transactions on Software
Engineering and Methodology, 34(2), 1-43.
https://doi.org/10.1145/3688843

Waseem, M., Das, T., Ahmad, A,, Liang, P., &
Mikkonen, T. (2024, June). Issues and Their Causes
in WebAssembly Applications: An Empirical Study.
In Proceedings of the 28th International
Conference on Evaluation and Assessment in
Software Engineering (pp. 170-180).

Mozilla. (2024). WebAssembly. MDN Web Docs.
Retrieved from https://developer.mozilla.org/en-
US/docs/WebAssembly (date of access:
02.09.2025)

Kamal, H., & Mashaly, M. (2025). Combined
Dataset System Based on a Hybrid PCA—
Transformer Model for Effective Intrusion
Detection Systems. Al, 6(8), 168.
https://doi.org/10.3390/ai6080168

W3C. (2023, October 5). Web Content Accessibility
Guidelines (WCAG) 2.2. W3C Recommendation.
Retrieved from https://www.w3.org/TR/WCAG22/
(date of access: 02.09.2025)

https://www.theamericanjournals.com/index.php/tajet

https://www.enterprisetimes.co.uk/2023/05/24/adobe-unveils-future-of-creative-cloud-with-generative-ai-in-photoshop/
https://www.enterprisetimes.co.uk/2023/05/24/adobe-unveils-future-of-creative-cloud-with-generative-ai-in-photoshop/
https://www.enterprisetimes.co.uk/2023/05/24/adobe-unveils-future-of-creative-cloud-with-generative-ai-in-photoshop/
https://doi.org/10.3390/app12083997
https://doi.org/10.3390/electronics12010143
https://doi.org/10.1145/3688843
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://doi.org/10.3390/ai6080168
https://www.w3.org/TR/WCAG22/

