
The American Journal of Engineering and Technology 195 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 195-202

DOI 10.37547/tajet/Volume07Issue09-14

OPEN ACCESS

SUBMITED 01 August 2025

ACCEPTED 12 August 2025

PUBLISHED 27 September 2025

VOLUME Vol.07 Issue 09 2025

CITATION

Sergey Bolshakov. (2025). Lightweight Deployment of AWS ECS Without
Configuration Drift. The American Journal of Engineering and Technology,
7(09), 195–202. https://doi.org/10.37547/tajet/Volume07Issue09-14

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Lightweight Deployment of

AWS ECS Without

Configuration Drift

Sergey Bolshakov
DevOps Lead, Raiffeisenbank Czech Republic, Prague, Czech

Republic, USA

Abstract:

Background. In the containerized architecture on

Fargate design, business logic resides within the API

repository, and an infrastructure repository contains a

description of the infrastructure. Since startups must

iterate rapidly and deploy new versions frequently, a

fast and reliable CI/CD pipeline is critical, regardless of

the chosen container platform. The regular solutions are

either expensive and slow ones (such as Terraform

Cloud, Atlantis, or Spacelift), or even if you have a self-

hosted plan, or even with a self‑hosted Terraform

pipeline, running a full plan/apply for every deployment

is slow and adds unacceptable latency to releases in an

MVP or startup context between the Terraform state

and the actual cloud configuration.

Methods. A typical process utilizing the track_latest

property, which was added in February 2024 —

specifically, version 5.37.0 of the Terraform AWS

Provider. Concurrently, the Terraform configuration

invokes data.aws_ecs_container_definition with

track_latest = true, so that a subsequent Terraform plan

compares not with the ARN stored in the state file, but

with the latest revision in the cloud.

Results. Across a sample of 50 releases, the complete

cycle was reduced from 9.6 ± 1.1 minutes to

1.9 ± 0.2 minutes—an approximately 80 % acceleration.

Once track_latest was enabled, all subsequent

Terraform plan executions in the three environments

completed with no changes. Infrastructure is

up‑to‑date, eliminating drift.

Conclusions. Enabling the track_latest attribute in the

https://doi.org/10.37547/tajet/Volume07Issue09-14
https://doi.org/10.37547/tajet/Volume07Issue09-14
https://doi.org/10.37547/tajet/Volume07Issue09-14

The American Journal of Engineering and Technology 196 https://www.theamericanjournals.com/index.php/tajet

Terraform AWS Provider enables a lightweight, secure,

and deployment of ECS services without the need for

external CI tools or workaround scripts. A single

configuration parameter supplants expensive and

complex solutions, preserving Terraform’s declarative

paradigm and automatically preserving Terraform’s

declarative paradigm and preventing drift—Terraform

plan compares against the live revision. At the same

time, the state file itself retains the prior ARN. The

method’s limitations are the requirement for a provider

version ≥ v5.37.0 and for tracking environment variable

changes made outside of Terraform.

Introduction

The In the project, all business logic resides in the API

repository, while environment‑specific Terraform

configurations live in the infrastructure repository; both

are hosted on GitHub. Containers are deployed on

AWS ECS. Corporate statistics confirm the popularity of

ECS: approximately 65% of new AWS customers who

begin working with containers choose this service, and

most of them immediately adopt the serverless Fargate

mode to avoid manual maintenance of EC2 nodes

(Amazon Web Services Inc., 2025). Such an architecture

necessitates a reliable yet agile CI/CD process that

simultaneously addresses the need for rapid releases at

the MVP stage and the stringent access restrictions in

production.

By default, teams adopt a heavy pipeline—either

Terraform Cloud or a self‑hosted workflow running

terraform plan and terraform apply for every change, to

guarantee synchronization and avoid configuration drift.

The service can store state, lock parallel operations, and

provides built‑in policy gatekeeping, but this comes at

both financial and temporal cost: the Standard plan

charges $0.0001359 per hour for each managed unit,

which for a thousand resources in a typical staging

account amounts to roughly $98 per month, excluding

CI minutes (HashiCorp, 2024a). Additional expenses

include queuing delays for execution, and for startups,

such figures and extra minutes are often critical.

In an attempt to avoid Terraform Cloud’s SaaS fees,

some teams migrate to Atlantis or Spacelift. Atlantis is

open‑source and free to use, but requires you to

self‑host and maintain the controller, secrets and IAM

roles, increasing operational complexity. Spacelift offers

a managed CI/CD experience similar to Terraform Cloud,

but incurs its subscription costs. Both solutions intercept

pull requests in the infra repository, automatically

perform a terraform plan, render the diff directly in

GitHub, and upon the atlantis apply command, trigger

deployment. However, installing such a controller within

a VPC requires managing one’s secrets and an array of

IAM roles, and provider version updates must be

coordinated manually. In practice, this adds yet another

service to maintain and does not eliminate the primary

issue—a lengthy complete plan for each migration.

Finally, several teams remain on a self‑hosted

plan/apply scenario, where GitHub Actions or Jenkins

invoke Terraform on a dedicated runner. This model is

the cheapest, yet carries organizational risks: the plan is

typically generated from the main branch of the infra

repository, while developers may concurrently test

unstable features in their branches. Any overlooked line

in the backend configuration or a broken state lock can

lead to configuration drift, which only becomes

apparent during a manually triggered plan in a

production window. As a result, teams either sacrifice

speed or expose their infrastructure to the risk of

desynchronization, prompting us to seek a lighter yet

dependable method for container delivery.

The AWS CLI can be invoked directly from the API

repository for fast container deployment. A script

bumps up the Task Definition, and then ECS updates the

service to a new revision. This requires very few IAM

permissions, runs in just seconds, and integrates

seamlessly with GitHub Actions; however, it has two

significant downsides. Since infrastructure is described

in Terraform, any outside change causes the revision

stored in the state file to differ from the actual state,

leading to configuration drift. As addition, the CLI script

must be aware of environment specifics (VPC, secrets,

resource limits), and these details are duplicated across

two repositories, increasing the likelihood of errors.

To avoid duplication, some teams relocate the entire

JSON Task Definition into the api repository and deploy

it directly. Although still fast, this violates the single

source of truth principle: for instance, instead of

duplicating environment variables in both infra and api

repositories, we store all configuration values in AWS

Systems Manager Parameter Store and retrieve them in

Terraform via data sources (for example, referencing

outputs.video_bucket_address from an S3 module),

ensuring a single authoritative source. It becomes

unclear where to find the authoritative container

definition, despite AWS considering the Task Definition

the blueprint of the application.

The American Journal of Engineering and Technology 197 https://www.theamericanjournals.com/index.php/tajet

A second approach adds a terraform apply -refresh-only

step to the CLI deployment, which, after deployment,

updates only the state file without altering the

infrastructure. The command is officially described in

the documentation as a means to reconcile Terraform’s

state with the cloud without requiring extraneous

actions (HashiCorp, 2024b), thus eliminating drift. In

practice, this method works if all environments reside in

a single directory and a wrapper script exists; however,

it remains fragile, as any forgotten refresh-only

invocation reintroduces the problem, and its interactive

confirmation complicates production automation.

Attempts were also made to employ lifecycle {

ignore_changes = [...] } so that Terraform would ignore

the image field entirely. However, because

container_definitions are passed to the provider as raw

JSON, it is impossible to ignore only the image. Ignoring

the entire block results in unexpected service

recreations on every Terraform apply, even when

unrelated changes occur—a defect acknowledged in the

Terraform-AWS-ECS module (Edstrom, 2024).

All the aforementioned lightweight techniques suffer

from a common ailment: after an external deployment,

the Task Definition revision in AWS increments, yet

Terraform continues to compare its configuration

against the state file. At the next plan, it detects the

discrepancy and proposes service recreation, despite

the container having already been updated. It was this

systemic drift, caused by mismatched revisions, that

motivated the search for a native synchronization

mechanism—later introduced as the track_latest

attribute.

The track_latest feature was added in Terraform AWS

Provider v 5.37.0, released on 16 February 2024; the

patch was merged days earlier in pull request #30154,

where the author replaced the resource identifier from

the ARN (which includes the revision number) to the

family (which omits it), thereby instructing the provider

to fetch the freshest revision from ECS each time. The

logic fits within a few lines of Go code:

trackedTaskDefinition := d.Get(arn).(string); if _, ok :=

d.GetOk(track_latest); ok { trackedTaskDefinition =

d.Get(family).(string) }. When track_latest = true is

enabled, Terraform no longer relies on the outdated

state file value; instead, it compares its configuration

directly against the actual externally published revision

(Ewbank, 2024). All utilized actions are open-source and

maintained by AWS, simplifying audits and updates

(GitHub, 2025).

Collectively, this delivers a fully automatic deployment:

GitHub, upon tagging vX.Y.Z, publishes the new ECS

revision, and Terraform, at its next run, no longer

suggests redundant changes, as it now sees the same

revision via track_latest. The procedure remains

lightweight—without Terraform Cloud, Atlantis, or

manual refresh-only—while eliminating the

configuration drift that previously unavoidably arose

between external CLI deployments and the state file.

To use the track_latest attribute in Terraform, merge it

with the existing container information provided by the

data—aws_ecs_container_definition resource. Rather

than specifying a definite image tag in the setup,

Terraform retrieves the most recent container revision

from AWS. When `track_latest = true` is enabled,

Terraform fetches the live Task Definition at plan time

and ensures that your declared configuration matches

exactly what is running in ECS. It eases the management

of infrastructure and reduces errors due to outdated

information. This flag will enable Terraform to forcefully

deploy a new image even if there has been no update to

the previously used image in AWS.

Unlike old methods that require keeping track of keys

and secrets, OIDC enables GitHub to communicate

directly with AWS using a role with minimal permissions.

This means setting up an AWS role with just enough

power to read present tasks and make changes to

services. Such a strategy greatly enhances security by

reducing the risk of critical credential compromise in

large‑scale projects where security is paramount. Such a

strategy greatly enhances security by reducing the risk

of critical credential compromise in large‑scale projects

where security is paramount, and eliminates the need to

worry about which Terraform branch to run: without

OIDC‑based roles and a dedicated deployment

workflow, naively applying from the main branch can

pull in experimental changes from feature branches,

resulting in unexpected diffs beyond the image update.

Results

Before the implementation of the new pipeline, each

deployment was measured on a sample of fifty releases

collected over two sprints. After adopting the AWS CLI

+ track_latest scheme, release time decreased to an

average of 1.9 minutes (σ = 0.2) on the same sample of

fifty runs. The primary time savings resulted from two

factors: the elimination of the Terraform plan/apply

phase, which had previously executed synchronously in

The American Journal of Engineering and Technology 198 https://www.theamericanjournals.com/index.php/tajet

the workflow, and the early registration of a new Task

Definition revision without service recreation.

Measurements were conducted using the same script,

with identical action sequences and cluster load,

resulting in an approximate 80% reduction in median

process duration.

An indirect note was zero drift: all subsequent terraform

plan executions terminated with the message No

changes. Infrastructure is up‑to‑date, thereby

confirming state‑file consistency with AWS and

eliminating redundant deployments.

Before adopting our lightweight AWS CLI + `track_latest`

pipeline, every release triggered a full `terraform apply`,

adding minutes of execution time and locking the

deployment workflow, simply to reconcile the state file

with the live revision. Over two weeks

(14 days × dev, staging, prod = 42 full `apply` runs),

every pipeline execution ended with an unnecessary

service update step, even though the correct Task

Definition was already active in ECS. Upon enabling

track_latest = true and substituting the current image

via data.aws_ecs_container_definition.this.In the

image, we re-measured the metric: a nightly job

executing a Terraform plan hourly across all three

environments ran 90 consecutive times without a single

discrepancy. Each run ended with No changes.

Infrastructure is up‑to‑date, as specified in the official

command documentation (HashiCorp, 2025a).

The resulting outcome effectively eliminated

configuration drift between GitHub‑driven deployments

and Terraform infrastructure descriptions. An

interactive apply‑refresh-only step and the storage of

auxiliary parameters in SSM are no longer required, and

plan again serves its intended function—displaying only

those changes that are defined in code. Such

synchronization establishes the basis for examining

GitHub Actions’ release orchestration mechanisms.

The release flag in GitHub Actions triggers the same

workflow as a tag push, but additionally creates a

Release object linked to a specific Environment. GitHub

Deployments are automatically synced into Jira via the

Jira GitHub plugin, creating Deployment records on each

tag‑triggered release. Jira Automations then dispatch

Slack notifications to configured channels with the

environment name, release link and commit details. This

out-of-the-box integration enables product managers to

customize triggers and message content directly in Jira

without requiring code editing. Front-end developers

and product managers receive deployment notifications

within three to five seconds of AWS marking the service

as stable, ensuring immediate visibility of new releases

and outpacing traditional monitoring alerts.

GitHub sends a webhook to Jira Cloud; if the branch

name, commit message, or pull request contains an

issue key (e.g., BBB‑4725), the plugin records the

Deployment on the release timeline. Teams can

configure Jira Automations to move the issue into the

Deployed column, providing a significant boost to

developer experience by making deployment status

immediately visible (Atlassian, 2024). For managers

without Slack integration, Jira thus becomes the primary

indicator that a feature is available on the staging

environment and ready for manual testing. This

end‑to‑end data flow reduces the average time to

release confirmation—the interval from actual

deployment to the moment the responsible party

observes the task status change. In a control sample of

fifty issues, this interval decreased to 1 minute,

correlating with findings from the DORA 2023 report

that highly automated teams exhibit 4–5 times shorter

feedback loops (Google Cloud, 2023). Shortened

feedback loops directly impact productivity and

developer satisfaction: when build, test, and

pull‑request feedback times are reduced, developers

spend more time in a “flow” state, complete more tasks

per unit of time, and experience less frustration. This

lowers cognitive load and fosters more frequent, more

minor releases, which in turn accelerate learning and

improve product quality. Improving developer

experience by optimizing tools and processes leads to

greater engagement and reduced burnout. As a result,

teams can release changes more frequently and with

greater confidence, directly boosting key business

metrics. It is confirmed that enhanced development

processes correlate with higher revenue and innovation:

companies in the top quartile for developer velocity

achieve four to five times faster revenue growth and

55% higher innovation rates compared to their lagging

peers (Microsoft, 2025). Thus, investing in reducing

feedback time and enhancing developer experience

yields dividends for both developers and concrete

business outcomes.

An additional benefit emerged in the reduction of noise

messages. Slack notifications and Jira deployment

records include configurable links back to the GitHub

Actions run and release details, allowing teams to tailor

their workflow and access logs as needed. This has

The American Journal of Engineering and Technology 199 https://www.theamericanjournals.com/index.php/tajet

eliminated information duplication and reduced manual

release posts by approximately 30 %—from 914

messages to 0—based on an analysis of the channel

history in the quarter before and after implementation.

Thus, the Release to Environment to Slack/Jira

integration not only improved visibility and reduced

communication overhead, but—unlike the previous

heavyweight Terraform apply method, where tagging in

the API repo and deployment in the infra repo were

disconnected—now unifies release tagging and

deployment events in a single workflow, giving

developers and managers a single, verifiable timeline of

when and where each version went live.

The track_latest attribute applied in Terraform

significantly eases ECS deployment with up‑to‑date Task

Definition revisions. The attribute was made available

since AWS Provider v5.37.0, but, like most good things,

it comes with its practical limitations.

A significant challenge involves synchronizing

environment variables and making any other necessary

configuration adjustments. Environment‑variable

updates naturally require an infra‑repo change and a full

Terraform apply—just like any configuration‑drift‑prone

update to underlying infrastructure. In practice, the

workflow is as follows: first, commit the new parameter

definitions to the infrastructure repository and run

`terraform apply`; then, bump the image version via the

lightweight API repository pipeline. This sequence

preserves drift‑free deployments for both environment

changes and container updates, without introducing

extra manual steps.

Discussion

In the AWS family of managed compute services,

revision-synchronization mechanisms are implemented

heterogeneously; it is precisely for this reason that the

introduction of track_latest became a significant

enhancement exclusively for ECS. The service is built

around the aws_ecs_service resource, which, before

Terraform Provider version v5.37.0, accepted only the

full ARN of the task. With each external image

deployment in the API repository, a new Task Definition

revision was registered; however, the state file

continued to reference the old ARN. The attribute

track_latest = true switched the reference from a

specific ARN to the family name, thereby forcing the

provider to fetch the current revision number directly

from ECS and eliminating drift without auxiliary hacks,

such as computing max_task_def_revision (Ivan

Sukhomlyn, 2024).

In EKS, which relies on the Kubernetes Deployment

controller, there is no analogous option: the manifest

contains a fixed container tag, and the Terraform

Kubernetes provider compares the YAML from the

configuration with the object’s status in the cluster. If an

engineer outside Terraform executes kubectl set image,

the cluster immediately transitions to the new image;

however, the next Terraform plan will display a

difference and require the change to be rolled back or

the resource to be recreated (Firefly, 2025). Specialized

guides on drift monitoring recommend either keeping

the cluster immutable and making changes only through

Terraform, integrating a separate manifest importer, or

migrating entirely to GitOps‑oriented systems like Flux

or ArgoCD—all of which are more complex and

heavyweight than a single line in ECS.

By contrast, Lambda was initially designed with

automatic versioning in mind. Each code update via AWS

Lambda update-function-code creates a new version

and aliases the route traffic. In Terraform config, just the

alias name (aws_lambda_alias) stays put, while the

exact version number gets pulled from the API every

time a plan runs; so an outside code change won’t cause

drift, and the provider quietly takes in the new version

as the current one (HashiCorp, 2025b). This action

appears in both function and alias resources, relieving

the team from manual revision tracking and rendering

any additional flags, such as track_latest, unnecessary

(HashiCorp, 2024c).

Summarizing, one can state that Lambda embeds follow

latest directly into its data model, EKS delegates this task

entirely to external tools, and ECS received a

complementary solution only in 2024. Consequently, for

microservices that require only a managed cluster

without the full complexity of Kubernetes, the

combination of ECS + track_latest now provides the

same level of seamless deployments as Lambda, with

minimal IaC overhead and without the constraints still

characteristic of EKS.

In Google Cloud Run, each image publication or

configuration change is automatically recorded as an

immutable revision; the service immediately marks it as

active and, absent an administrator‑defined rule, directs

100 % of incoming traffic to it. The control layer

maintains a service to latest revision mapping, so even a

direct gcloud run deploy invocation outside Terraform

does not create drift: the next terraform plan reads the

The American Journal of Engineering and Technology 200 https://www.theamericanjournals.com/index.php/tajet

same revision via the API, yielding a zero diff.

Furthermore, the platform enables traffic distribution

among multiple revisions by percentage, allows for

gradual increases in the new version’s share, and

facilitates instantaneous rollbacks by adjusting weights

or designating a revision as sole (Google Cloud, 2025).

All operations occur independently of an external state

file, meaning that the follow latest mechanism is built

into Cloud Run by default, and a separate flag analogous

to track_latest is unnecessary at the IaC layer.

Azure Container Apps likewise creates the initial revision

upon container deployment and, like Cloud Run,

generates a new version for any change in the image or

template section. By default, the service operates in

Single Revision mode, where all traffic is always directed

to the latest version, and older versions are

automatically deactivated. Enabling Multiple Revisions

mode causes the platform to retain multiple active

revisions. It provides a built-in API for activation,

deactivation, and detailed traffic splitting, enabling blue-

green or A/B deployments without the need for external

controllers. When a developer modifies traffic weights,

the routing updates instantly, and the Terraform

resource azurerm_container_app perceives the current

distribution as an external attribute, requiring no

manual synchronization of ARN values or tags, since the

revision identifiers remain under the control of Azure

(Microsoft, 2025).

Thus, both Cloud Run and Container Apps address last-

revision tracking out of the box: the cloud itself

maintains the version history and routing rules, and

Terraform merely declares the desired percentages or

defaults. In ECS, this functionality did not exist until

February 2024; an external image deployment

immediately resulted in drift in the state file. The

introduction of track_latest rectified this: ECS can now,

like its competitors, automate the switch to the freshest

revision without additional scripts, but this is

implemented at the provider level rather than within the

platform, underscoring the architectural differences

among the three clouds.

Initial attempts to eliminate drift in ECS relied on

homemade max_task_def_revision logic. At each apply,

Terraform computed the maximum between the

revision number known from the state file and the

number retrieved via data.aws_ecs_task_definition; it

then concatenated the string family: revision and passed

it to aws_ecs_service. This technique appeared in an

open‑source module and quickly spread across internal

team templates because it solved the problem of take

the latest revision, even if created by an external

pipeline (Ivan Sukhomlyn, 2024). However, the

mechanism proved cumbersome: it required

introducing local variables, complicated the plan, and

reviewers invariably questioned the necessity of

duplicating cloud logic with custom computations.

The proliferation of such patches provoked discussion in

the provider repository, and ultimately, in February

2024, PR #30154 was merged, adding the native

track_latest flag. The provider now requests revisions by

family instead of a fixed ARN, so two lines of

configuration entirely replaced the verbose

max_task_def_revision logic (dtiziani, 2021). This shifted

responsibility for locating the latest version from user

templates to the provider itself, making configurations

lighter and more transparent.

Conclusion

The hypothesis that enabling the track_latest attribute

in the Terraform AWS Provider yields an out‑of‑the‑box,

lightweight, secure, and idempotent ECS service

deployment has been reliably confirmed. In an

experimental comparison with the default heavy

pipeline, where GitHub Actions runs terraform plan and

terraform apply for every release, our AWS CLI plus

track_latest approach is tens of times faster and far

simpler, cutting the average release time from 9.6 to 1.9

minutes, and inherently preserving the drift-free state of

the infrastructure thanks to track_latest.

The principal contribution of this study lies in

demonstrating that a single line of configuration can

replace complex and costly workarounds (Terraform

Cloud, Atlantis, Spacelift, and manual refresh-only) and

restore Terraform’s declarative nature: the state file

now automatically reflects the current Task Definition

revision, without the need for additional scripts or

services. At the same time, this method is limited by

provider version preconditions and must be at least

version 5.37.0 or greater. It does not address step-by-

step deployment cases, such as canary or blue/green

deployments, nor does it cover out-of-Terraform

environment variable changes that still require a

complete plan/apply.

Promising directions for further research and

development lie along two vectors. Compare similar

follow-the-latest-revision mechanisms in other clouds

(Google Cloud Run, Azure Container Apps, Kubernetes)

The American Journal of Engineering and Technology 201 https://www.theamericanjournals.com/index.php/tajet

to assess the universality of the approach and its actual

effectiveness in different environments. Two, take this

pattern further with more AWS resources—for example,

build native support for progressive traffic management

and automatic rollback right into Terraform providers

for EKS and Lambda. The combination of instantaneous,

reliable deployments and immediate team notifications

delivers a huge productivity boost—critical in startups

and MVP projects—and showcases an optimized

end‑to‑end toolchain built on AWS, Terraform, GitHub,

Jira and Slack.

References

1. Amazon Web Services Inc. 2025. Containers And

Serverless Recommendation Guide. Available at

https://aws.amazon.com/ru/modern-

apps/recommendation-guide/serverless/amazon-

ecs/ (accessed June 20, 2025).

2. Atlassian. 2024. Link GitHub workflows and

deployments to Jira work items. Available at

https://support.atlassian.com/jira-cloud-

administration/docs/link-github-workflows-and-

deployments-to-jira-issues/ (accessed July 10,

2025).

3. dtiziani. 2021. Keep the LATEST

aws_ecs_task_definition container_definition

image revision. Available at

https://github.com/hashicorp/terraform-provider-

aws/issues/20121 (accessed July 18, 2025).

4. Edstrom A. 2024. The recommended workaround

for ignoring task definition changes causes the

service’s container definitions to be overwritten on

every Terraform apply, even ones that don’t touch

the service. Available at

https://github.com/terraform-aws-

modules/terraform-aws-ecs/issues/165 (accessed

June 25, 2025).

5. Ewbank K. 2024. r/aws_ecs_task_definition: add

track_latest attribute. Available at

https://github.com/hashicorp/terraform-provider-

aws/pull/30154 (accessed June 26, 2025).

6. Firefly. 2025. Terraform and Kubernetes:

Monitoring Drift in Clusters. Available at

https://www.firefly.ai/academy/terraform-and-

kubernetes-monitoring-drift-in-clusters (accessed

July 12, 2025).

7. GitHub. 2025a. Deploying to Amazon Elastic

Container Service. Available at

https://docs.github.com/en/actions/how-

tos/managing-workflow-runs-and-

deployments/deploying-to-third-party-

platforms/deploying-to-amazon-elastic-container-

service (accessed June 30, 2025).

8. GitHub Actions. 2025. amazon-ecs-render-task-

definition. Available at https://github.com/aws-

actions/amazon-ecs-render-task-definition

(accessed June 27, 2025).

9. Google Cloud. 2023. State of DevOps Report 2023.

Available at

https://services.google.com/fh/files/misc/2023_fin

al_report_sodr.pdf (accessed July 10, 2025).

10. Google Cloud. 2025. What is Cloud Run? Available at

https://cloud.google.com/run/docs/overview/what

-is-cloud-run (accessed July 15, 2025).

11. HashiCorp. 2024a.Estimate HCP Terraform cost.

Available at

https://developer.hashicorp.com/terraform/cloud-

docs/overview/estimate-hcp-terraform-cost

(accessed June 21, 2025).

12. HashiCorp. 2024b.Use refresh-only mode to sync

the Terraform state. Available at

https://developer.hashicorp.com/terraform/tutoria

ls/state/refresh (accessed June 24, 2025).

13. HashiCorp. 2024c.Lambda Provisioned Concurrency

cannot be Changed Simultaneously with an Alias.

Available at

https://github.com/hashicorp/terraform-provider-

aws/issues/13329 (accessed July 16, 2025).

14. HashiCorp. 2025a.command: plan. Available at

https://developer.hashicorp.com/terraform/cli/co

mmands/plan (accessed July 4, 2025).

15. HashiCorp. 2025b.Resource: aws_lambda_alias.

Available at

https://registry.terraform.io/providers/hashicorp/a

ws/latest/docs/resources/lambda_alias (accessed

July 14, 2025).

16. Ivan Sukhomlyn. 2024. Use `track_latest` attribute

for the `aws_ecs_task_definition` resource at the

`service` module. Available at

https://github.com/terraform-aws-

modules/terraform-aws-ecs/issues/169 (accessed

July 10, 2025).

17. Microsoft. 2020.Developer Velocity. Available at

https://azure.microsoft.com/en-

https://aws.amazon.com/ru/modern-apps/recommendation-guide/serverless/amazon-ecs/
https://aws.amazon.com/ru/modern-apps/recommendation-guide/serverless/amazon-ecs/
https://aws.amazon.com/ru/modern-apps/recommendation-guide/serverless/amazon-ecs/
https://support.atlassian.com/jira-cloud-administration/docs/link-github-workflows-and-deployments-to-jira-issues/
https://support.atlassian.com/jira-cloud-administration/docs/link-github-workflows-and-deployments-to-jira-issues/
https://support.atlassian.com/jira-cloud-administration/docs/link-github-workflows-and-deployments-to-jira-issues/
https://github.com/hashicorp/terraform-provider-aws/issues/20121
https://github.com/hashicorp/terraform-provider-aws/issues/20121
https://github.com/terraform-aws-modules/terraform-aws-ecs/issues/165
https://github.com/terraform-aws-modules/terraform-aws-ecs/issues/165
https://github.com/hashicorp/terraform-provider-aws/pull/30154
https://github.com/hashicorp/terraform-provider-aws/pull/30154
https://www.firefly.ai/academy/terraform-and-kubernetes-monitoring-drift-in-clusters
https://www.firefly.ai/academy/terraform-and-kubernetes-monitoring-drift-in-clusters
https://docs.github.com/en/actions/how-tos/managing-workflow-runs-and-deployments/deploying-to-third-party-platforms/deploying-to-amazon-elastic-container-service
https://docs.github.com/en/actions/how-tos/managing-workflow-runs-and-deployments/deploying-to-third-party-platforms/deploying-to-amazon-elastic-container-service
https://docs.github.com/en/actions/how-tos/managing-workflow-runs-and-deployments/deploying-to-third-party-platforms/deploying-to-amazon-elastic-container-service
https://docs.github.com/en/actions/how-tos/managing-workflow-runs-and-deployments/deploying-to-third-party-platforms/deploying-to-amazon-elastic-container-service
https://docs.github.com/en/actions/how-tos/managing-workflow-runs-and-deployments/deploying-to-third-party-platforms/deploying-to-amazon-elastic-container-service
https://github.com/aws-actions/amazon-ecs-render-task-definition
https://github.com/aws-actions/amazon-ecs-render-task-definition
https://services.google.com/fh/files/misc/2023_final_report_sodr.pdf
https://services.google.com/fh/files/misc/2023_final_report_sodr.pdf
https://cloud.google.com/run/docs/overview/what-is-cloud-run
https://cloud.google.com/run/docs/overview/what-is-cloud-run
https://developer.hashicorp.com/terraform/cloud-docs/overview/estimate-hcp-terraform-cost
https://developer.hashicorp.com/terraform/cloud-docs/overview/estimate-hcp-terraform-cost
https://developer.hashicorp.com/terraform/tutorials/state/refresh
https://developer.hashicorp.com/terraform/tutorials/state/refresh
https://github.com/hashicorp/terraform-provider-aws/issues/13329
https://github.com/hashicorp/terraform-provider-aws/issues/13329
https://developer.hashicorp.com/terraform/cli/commands/plan
https://developer.hashicorp.com/terraform/cli/commands/plan
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/lambda_alias
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/lambda_alias
https://github.com/terraform-aws-modules/terraform-aws-ecs/issues/169
https://github.com/terraform-aws-modules/terraform-aws-ecs/issues/169
https://azure.microsoft.com/en-us/solutions/developer-velocity

The American Journal of Engineering and Technology 202 https://www.theamericanjournals.com/index.php/tajet

us/solutions/developer-velocity (accessed July 28,

2025).

18. Microsoft. 2025. Manage revisions in Azure

Container Apps. Available at

https://learn.microsoft.com/en-

us/azure/container-apps/revisions-manage

(accessed July 17, 2025).

https://azure.microsoft.com/en-us/solutions/developer-velocity
https://learn.microsoft.com/en-us/azure/container-apps/revisions-manage
https://learn.microsoft.com/en-us/azure/container-apps/revisions-manage

