
The American Journal of Engineering and Technology 215 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 215-221

DOI 10.37547/tajet/Volume07Issue09-17

OPEN ACCESS

SUBMITED 08 August 2025

ACCEPTED 14 August 2025

PUBLISHED 30 September 2025

VOLUME Vol.07 Issue 09 2025

CITATION
Oleksandr Tserkovnyi. (2025). Overcoming the Real-World Pitfalls of
Google Document AI. The American Journal of Engineering and
Technology, 7(09), 215–221.
https://doi.org/10.37547/tajet/Volume07Issue09-17

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Overcoming the Real-

World Pitfalls of Google

Document AI

Oleksandr Tserkovnyi
TrialBase Inc., Principal Engineer Dominican Republic, Punta Cana

Abstract: This paper discusses the practical and feature

gaps that were encountered with Google Document AI

in building the AI product at TrialBase platform

(ai.trialbase.com), which automates legal document

analysis. Results matter because there is an explosion of

electronic legal documents that require fast and reliable

parsing, which is essential for systems based on LLMs

and retrieval-augmented generation. Standard

Document AIs seldom work well in practice, even if there

are no damaged PDFs, and if a large dataset is being

used, wherein the API quota is not hit, and processing

costs do not matter. The architecture proposed in this

paper is robust, efficient at transforming various

documents into structured data. Event-driven

microservice architecture with message queues and a

PDF sanitization pipeline solves real-world problems by

enabling ProcessorPool (multiple processors using

synchronous Document AI API to go beyond quota

limitation concurrently drastically reducing processing

times). Pre-sanitization, coupled with asynchronous

batch processing and a custom load balancer, got a

tenfold speed increase with enhanced reliability over

real-world legal documents. The article is meant to help

LegalTech researchers and practitioners, workflow

developers, and engineers working on high-

performance, reliable Google Cloud-based projects.

Keywords: Google Document AI, LegalTech, document

analysis automation, PDF processing, RAG, LLM,

microservice architecture, asynchronous processing,

ProcessorPool.

Introduction

In current LegalTech practice, document analysis

automation is a core determinant of efficiency and cost

https://doi.org/10.37547/tajet/Volume07Issue09-17
https://doi.org/10.37547/tajet/Volume07Issue09-17

The American Journal of Engineering and Technology 216 https://www.theamericanjournals.com/index.php/tajet

reduction. Practically, platforms that are meant to

support the legal process need to deal with large

volumes of multi-type documents: police reports,

medical bills, and deposition transcripts, all other

materials related to the case. The primary task is to

convert scanned pictures packed into PDFs into neat text

that can be viewed later using large language models

and a technique called retrieval-augmented generation

(RAG), which enables attorneys to reliably apply large

language models to practical tasks, such as the

automated preparation of demand letters.

It is founded on the creation of TrialBase, a product

designed to perform automatic deposition management

across the entire lifecycle. A key element of this system

includes an AI-related component whose functionalities

shall review all case files and detect cross-references

among them, as well as help prepare outputs of a legal

nature, such as demand letters. It should be noted that

the commercial product TrialBase (trialbase.com) is

primarily focused on automating and managing the

deposition process, including document package

preparation, participant coordination, and the

generation of legal artifacts during the event. By

contrast, the AI module (ai.trialbase.com) addresses

ancillary pre- and post-deposition stages, such as intake

forms, demand-letter drafting, and broader pretrial

preparation, providing structured inputs to improve

downstream LLM-driven workflows. It is exactly at the

'analyze all case documents' stage that most technical

challenges regarding data extraction come into play.

Google Document AI was selected as the major tool

towards this objective because of the motivation of

project infrastructure being fully integrated into the

Google Cloud Platform (GCP) ecosystem, so as to reduce

using third-party providers and for easy maintenance.

The article sequentially lists down the evolution steps of

the document processing approach shares where

standard implementations go short comes and at last

shares optimized architectural solution.

Materials and Methodology

The study draws its learning from the practical

experience gained in designing and running TrialBase.

The research materials included a corpus of legal

documents: police reports, medical bills, deposition

transcripts, and related procedural files. Most came as

PDFs, which mostly serve as containers for scanned

images, thus requiring optical character recognition

(OCR) technologies.

The method used a multi-level approach that included

actual testing, making the structure, and comparing

Document AI processors. First, it tested three main types

of processors: Document OCR, which identifies and

extracts text in different types of documents, Layout

Parser, which identifies and extracts document layouts

and chunks (Xu et al., 2021), and Form Parser, which

extracts form elements such as text and checkboxes

(Powalski et al., 2021). The purpose was to discover one

answer for many legal issues. It also tested an Invoice

Parser, revealing its flaws with both tables and words

(Appalaraju et al., 2021), as well as a Utility Parser, which

extracts more than 30 fields from Utility statements:

amount, line items, etc., and an Expense Parser, which

extracts from Receipts, including supplier, total amount,

tip, etc.. A step occurred before testing, which involved

copying the actual environment. The first idea was

straightforward: placing documents in the GCP cloud

store, utilizing Document AI with a simple API call, and

then enhancing the knowledge base for the RAG setup.

Tests on files of different sizes brought out a limitation

of 15 pages for Form Parser as well as quotas of 6

requests per minute per processor being used. To verify

these constraints, a performance analysis was done

whose results are captured in tables and measurement

logs.

The architecture for asynchronous processing was based

on batch processing via LRO. Documents got chopped up

to the max limits of DocAI (100 pages, 1GB per chunk).

For even more reliability, add yet another pre-

sanitization pipeline for files with qpdf, Ghostscript, and

pdf-cpu. This will standardize and repair corrupted PDFs,

hence minimizing errors on the Document AI side.

The last stage constituted the design and testing of a

personalized pool of processors (ProcessorPool) that

would allow for parallel calling of the same synchronous

Document AI API thus bypassing the low performance

realized from batchProcessDocuments natively.

ProcessorPool distributed page processing across

numerous pre-created Form Processor instances, while

respecting quotas and gRPC-channel constraints. This

enabled comparison of native and custom approaches

and a quantitative estimate of the acceleration achieved

(up to a tenfold reduction in time).

Results and Discussion

The system’s central concept is that users upload a

collection of documents that the system must analyze to

build a RAG knowledge base. The majority of files are

The American Journal of Engineering and Technology 217 https://www.theamericanjournals.com/index.php/tajet

PDFs, which are essentially containers of scanned

images of pages. This disables any simple text extraction

and hence necessitates optical character recognition (He

& Schomaker, 2017). Google Document AI is making a

full implementation available at the low end, abstracting

from the developer all low-level, fiddly details. This

includes content-type detection (text versus image

content), segment dispatching to OCR, and then

processing and merging results.

The service provides various specialized “processors.”

For this study, three core types were considered: OCR

Processor, an enhanced version of standard OCR

augmented with Google models and supporting image

formats and PDF; Layout Parser Processor, intended for

documents with clear structure, such as DOCX or XLSX,

extracting layout elements (text, tables, lists) (Xu et al.,

2021); and Form Parser, the primary processor chosen

for implementation, optimized for documents

containing forms (medical bills, questionnaires, reports),

yet also demonstrating high effectiveness on ordinary

scanned letters and textual documents (Powalski et al.,

2021).

Empirical tests have proven that more specialized

processors, namely the Invoice Parser, Utility Parser,

and Expense Parser, do not supersede the Form Parser

in terms of universality and accuracy even on domain-

specific documents. For example, it may completely miss

table columns or line breaks (Appalaraju et al., 2021).

The Form Parser yielded more completeness and

accuracy of extraction because textual blocks, for

example, physicians’ summaries, are never omitted, and

also recognizes table structure correctly. Hence, the

Form Parser was selected as a universal instrument for

most incoming documents.

The initial working hypothesis envisioned a linear,

straightforward workflow. The client application would

upload documents to GCP cloud storage via a pre-signed

URL and then dispatch a request to the server to process

them. The server, in turn, would invoke Document AI,

await the result, enrich the RAG system with the output

(create vectors and persist them in the database), and

notify the client upon completion.

The initial implementation followed this plan and

consisted of two API endpoints: one to generate the

upload link and the other to initiate processing. It

worked well with small files (1-10 pages), but when a 22-

page document was tried, it hit against very rigid

limitations of the synchronous Document AI API: File size

must not exceed 40 MB, and page count, as shown in

Table 1, is capped at 15.

Table 1. Performance and Constraints of the Form Parser (compiled by author)

Pages per

document

15 pages

Form Parser

processor limits

You can raise this to 30 pages by setting

imageless_mode = true in the ProcessRequest

payload.

Image

resolution

40

megapixels

per page

Content limits

Applies only to image files; PDFs are exempt.

Requests per

minute

6 req/min

“Online process

requests per

minute (single

region)” quota

This bucket is per project × processor type. All

Form Parsers you create in the same region

share the same 6-RPM allowance.

The American Journal of Engineering and Technology 218 https://www.theamericanjournals.com/index.php/tajet

Global API

ceiling

1,800

req/min per

user

General Document

AI quota

Rarely is the bottleneck, but it applies across all

Document AI methods you call from that user

in the project.

As a temporary measure, a utility was implemented to split documents into chunks, process them sequentially,

and then merge the results

Nevertheless, this approach proved untenable for large

files typical of medical documentation (e.g., 700 MB and

1,600 pages). First, the long wait times (over 30 minutes)

triggered timeouts in the browser or network

infrastructure. Second, the user experience (UX) was

severely degraded, as users had to remain on the page,

awaiting completion, which increased the risk of churn.

Third, processing errors sporadically arose due to PDF

integrity issues.

To address long waits, the system migrated to the

asynchronous batch processing provided by Google

Document AI. This mechanism operates similarly to the

synchronous path but enforces different limits and uses

a distinct API grounded in long-running operations

(LRO). The architecture was modified: after file upload,

the client initiated processing and subsequently polled

the server for status at intervals, freeing users from

having to wait on an active tab. The server started a

batch job in Document AI. When checking on its

progress, it looked at the LRO state.

Batch-processing limits go much higher: up to 1 GB per

chunk and up to 100 pages. The system was enhanced

to split large documents into manageable chunks,

adhering to these limits. This solution not only

successfully handled large files but also improved user

experience. However, real-world data stress tests

revealed new issues, both in terms of instability with

specific files and general performance, which motivated

an architectural redesign at a more fundamental level.

It has been observed that a large percentage of PDFs

uploaded by users are damaged or not standard-

compliant, most likely due to multiple conversions and

the use of low-quality tools for scanning/merging. In

such cases, Document AI throws back an error of file

corruption or invalid format. It has also been empirically

noticed that though the 100-page limit is not crossed

more than 50 pages in a chunk mostly fails, the same

document split into 20-page chunks succeeds.

The solution, therefore, was to set up a pre-processing

and PDF “sanitization” pipeline before dispatching data

to Document AI. The open-source command-line

toolchain used included qpdf, Ghostscript (gs), pdf-cpu,

mutool, and pdfseparate. Among the features that those

tools offer are validation and repair, check file structure

and fix errors in it; optimization and compression, make

the file smaller without losing any quality; PDF version

updates, take legacy documents up to what has become

a modern standard, so there’s improved compatibility;

decryption, removal of protection from encrypted

documents.

A multi-tier fallback mechanism was developed,

whereby the system attempts to process the file using

different utilities at various tiers, as shown in Figure 1.

The American Journal of Engineering and Technology 219 https://www.theamericanjournals.com/index.php/tajet

Fig. 1. Repair PDF code sample (compiled by author)

This stage ensured that only valid, decrypted, and

standardized files were sent to Document AI, which

significantly increased the overall reliability of the

system. Previously, it was highlighted that there was a

basic flaw. The client application still had to be

responsible for some part of the logic (status polling).

Without queues, load management could not be

properly handled when many users were uploading files

at once. This necessitated a fully event-driven

architecture.

The new architecture cleanly separates responsibilities

among system components. The client (front end)

merely requests a pre-signed URL and uploads the file to

cloud storage; its role then concludes. The messaging

layer (Pub/Sub) automatically triggers an event after a

successful upload, such that it gets published to a topic.

The Upload Handler (which is a microservice listening to

this topic) will create a document record inside the

database (storing the file path, user id, and case id), set

some initial status, and then dispatch a task into the next

service’s queue. The Document Worker prepares and

processes files inside Document AI. PDF sanitization,

chunking, and recognition are performed, then update

the status inside the database and send the extracted

text to the next queue. The LLM Worker gets already

processed text from a queue split in accordance with

token limits. It gets classified by any fast model for

example flash-2.0 synopsis generation with a primary

model vector embeddings built using the text-

embedding-004 model Genkit AI then stored inside

PostgreSQL with pgvector extension for further usage

inside the RAG system.

The American Journal of Engineering and Technology 220 https://www.theamericanjournals.com/index.php/tajet

This setup makes sure that elements are loosely joined,

making it easy to work on and keep up with each part.

The plan with lines (Cloud Tasks) and Pub/Sub provides

a robust system that can handle the most load, as it

brings additional service units in Cloud Run when

needed. Even after setting the building right, the speed

problem stayed. The native async batch API from Google

turned out to be shockingly slow. Processing a large

document (1,600 pages, 700 MB) took about 50

minutes, and this was sometimes only to obtain an error

response about the source file. Meanwhile, processing a

100-page document via a custom implementation with

sequential synchronous API calls took 1–2 minutes.

Extrapolating this result (16 × 2 minutes + 20% margin)

yielded an estimate of 39 minutes, already faster than

the native solution.

This led to the hypothesis that a faster batch-processing

system could be built by parallelizing the fast

synchronous API calls (Li et al., 2022). To that end, a key

component, ProcessorPool, was developed. Essentially a

custom load balancer, it manages a pool of several (e.g.,

20) pre-created Form Processor instances in Document

AI.

The ProcessorPool’s operating principle, shown in Figure

2, is that the pool maintains a list of available processor

IDs and tracks the current load on each, honoring the

synchronous API constraint of no more than six requests

per minute per processor. When handling a large

document, it is first split into individual pages. The pool

then distributes page-processing tasks to the least-

loaded processors, ensuring that limits are not

exceeded. Execution proceeds in parallel using pLimit:

the main thread does not block waiting for each page

but awaits completion of all promises at the top level. A

retry policy is applied to pages whose processing failed.

The system operates a shared pool for all documents

uploaded concurrently and processes them on a FIFO

basis.

Fig. 2. ProcessorPool Sequence (compiled by author)

The American Journal of Engineering and Technology 221 https://www.theamericanjournals.com/index.php/tajet

A critical technical nuance involved the payload-size

limit of the gRPC channel used by the Document AI SDK.

Despite the API’s declared 40 MB limit, the gRPC channel

cannot transmit more than 4 MB. Therefore, pages

exceeding ~3.5 MB (base64) are uploaded to temporary

storage before processing, and a link is passed to

Document AI.

Introducing the ProcessorPool enabled a tenfold

acceleration on some documents. For example, the end-

to-end processing time for a 1,000-page document

(including sanitization, recognition, and RAG creation)

fell to 12 minutes. Moreover, this approach provided

granular control, enabling the precise identification and

debugging of issues at the page level.

Conclusion

The normal ways to use Google Document AI that the

documentation suggests are not good for making a

system that works well and is reliable when dealing with

actual legal papers. Problems in practice- faulty PDFs

and poor results from the native batch API caused the

need for a complete multi-stage fix.

The design produced a microservices architecture,

message queues, and a presanitization pipeline that

could deliver the level of fault tolerance and scalability

aimed for. ProcessorPool can do synchronous API calls in

parallel, which beats the so-named state-of-the-art

asynchronous method today by up to 10x in processing

time. What this means is essentially instant, reliable

conversion-at-scale from arbitrary volumes of

heterogeneous documentation into structured data

ready for analysis by LLMs. Future work will involve

training and tuning Document AI processors to achieve

better recognition accuracy and efficiency for specific

document types.

Quotas and limits related to Google Document AI work.

In synchronous (online) processing, major quotas

include a 15-page document limit and a 6 requests per

minute per processor type in a region. For batch

processing, the limits are higher: up to 5 concurrent

requests per processor, up to 10,000 pages in active

processing per project, and up to 100 pages per

document for the Form Parser.

Cost is a significant factor. The Form Parser rate is $30

per 1,000 processed pages. Cost analysis during testing

revealed that processing a standard multi-page medical

document can cost up to $45. This aspect requires

careful consideration when shaping the product’s

economic model.

Beyond API limitations, other technical challenges were

uncovered. The constrained resources of Cloud Run

(maximum 8 vCPU and 32 GB RAM) demand careful

balancing of parallel processes to avoid out-of-memory

errors; an optimal configuration for a single instance

proved to be 25 parallel operations. Service timeouts

also matter: Cloud Tasks is limited to 1,800 seconds (30

minutes), so jobs that may run longer are best moved to

Cloud Run Jobs, where the timeout extends to 7 days.

Additionally, sporadic connectivity issues were observed

between one service and the Cloud PostgreSQL

database, which were resolved by fine-tuning the

connection parameters.

References

1. Appalaraju, S., Jasani, B., Kota, B. U., Xie, Y., &

Manmatha, R. (2021). DocFormer: End-to-End

Transformer for Document Understanding. 2021

IEEE/CVF International Conference on Computer

Vision (ICCV).

https://doi.org/10.1109/iccv48922.2021.00103

2. He, S., & Schomaker, L. (2017). Beyond OCR: Multi-

faceted understanding of handwritten document

characteristics. Pattern Recognition, 63, 321–333.

https://doi.org/10.1016/j.patcog.2016.09.017

3. Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., & Guo, M.

(2022). The Serverless Computing Survey: A

Technical Primer for Design Architecture. ACM

Computing Surveys, 54(10s), 1-34.

https://doi.org/10.1145/3508360

4. Powalski, R., Borchmann, Ł., Jurkiewicz, D., Dwojak,

T., Pietruszka, M., & Pałka, G. (2021). Going Full-TILT

Boogie on Document Understanding with Text-

Image-Layout Transformer. Arxiv.

https://doi.org/10.48550/arxiv.2102.09550

5. Xu, Y., Xu, Y., Lv, T., Cui, L., Wei, F., Wang, G., Lu, Y.,

Florencio, D., Zhang, C., Che, W., Zhang, M., & Zhou,

L. (2021). LayoutLMv2: Multi-modal Pre-training for

Visually-rich Document Understanding. In

Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the

11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers),

2579–2591. https://doi.org/10.18653/v1/2021.acl-

long.201

https://doi.org/10.1109/iccv48922.2021.00103
https://doi.org/10.1109/iccv48922.2021.00103
https://doi.org/10.1109/iccv48922.2021.00103
https://doi.org/10.1016/j.patcog.2016.09.017
https://doi.org/10.1016/j.patcog.2016.09.017
https://doi.org/10.1016/j.patcog.2016.09.017
https://doi.org/10.1145/3508360
https://doi.org/10.1145/3508360
https://doi.org/10.1145/3508360
https://doi.org/10.48550/arxiv.2102.09550
https://doi.org/10.48550/arxiv.2102.09550
https://doi.org/10.48550/arxiv.2102.09550
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201

