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Abstract: This paper discusses the practical and feature 

gaps that were encountered with Google Document AI 

in building the AI product at TrialBase platform 

(ai.trialbase.com), which automates legal document 

analysis. Results matter because there is an explosion of 

electronic legal documents that require fast and reliable 

parsing, which is essential for systems based on LLMs 

and retrieval-augmented generation. Standard 

Document AIs seldom work well in practice, even if there 

are no damaged PDFs, and if a large dataset is being 

used, wherein the API quota is not hit, and processing 

costs do not matter.  The architecture proposed in this 

paper is robust, efficient at transforming various 

documents into structured data. Event-driven 

microservice architecture with message queues and a 

PDF sanitization pipeline solves real-world problems by 

enabling ProcessorPool (multiple processors using 

synchronous Document AI API to go beyond quota 

limitation concurrently drastically reducing processing 

times). Pre-sanitization, coupled with asynchronous 

batch processing and a custom load balancer, got a 

tenfold speed increase with enhanced reliability over 

real-world legal documents. The article is meant to help 

LegalTech researchers and practitioners, workflow 

developers, and engineers working on high-

performance, reliable Google Cloud-based projects. 

Keywords: Google Document AI, LegalTech, document 

analysis automation, PDF processing, RAG, LLM, 

microservice architecture, asynchronous processing, 

ProcessorPool. 

Introduction 

In current LegalTech practice, document analysis 

automation is a core determinant of efficiency and cost 
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reduction. Practically, platforms that are meant to 

support the legal process need to deal with large 

volumes of multi-type documents: police reports, 

medical bills, and deposition transcripts, all other 

materials related to the case. The primary task is to 

convert scanned pictures packed into PDFs into neat text 

that can be viewed later using large language models 

and a technique called retrieval-augmented generation 

(RAG), which enables attorneys to reliably apply large 

language models to practical tasks, such as the 

automated preparation of demand letters. 

It is founded on the creation of TrialBase, a product 

designed to perform automatic deposition management 

across the entire lifecycle. A key element of this system 

includes an AI-related component whose functionalities 

shall review all case files and detect cross-references 

among them, as well as help prepare outputs of a legal 

nature, such as demand letters. It should be noted that 

the commercial product TrialBase (trialbase.com) is 

primarily focused on automating and managing the 

deposition process, including document package 

preparation, participant coordination, and the 

generation of legal artifacts during the event. By 

contrast, the AI module (ai.trialbase.com) addresses 

ancillary pre- and post-deposition stages, such as intake 

forms, demand-letter drafting, and broader pretrial 

preparation, providing structured inputs to improve 

downstream LLM-driven workflows. It is exactly at the 

'analyze all case documents' stage that most technical 

challenges regarding data extraction come into play. 

Google Document AI was selected as the major tool 

towards this objective because of the motivation of 

project infrastructure being fully integrated into the 

Google Cloud Platform (GCP) ecosystem, so as to reduce 

using third-party providers and for easy maintenance. 

The article sequentially lists down the evolution steps of 

the document processing approach shares where 

standard implementations go short comes and at last 

shares optimized architectural solution. 

Materials and Methodology 

The study draws its learning from the practical 

experience gained in designing and running TrialBase. 

The research materials included a corpus of legal 

documents: police reports, medical bills, deposition 

transcripts, and related procedural files. Most came as 

PDFs, which mostly serve as containers for scanned 

images, thus requiring optical character recognition 

(OCR) technologies. 

The method used a multi-level approach that included 

actual testing, making the structure, and comparing 

Document AI processors. First, it tested three main types 

of processors: Document OCR, which identifies and 

extracts text in different types of documents, Layout 

Parser, which identifies and extracts document layouts 

and chunks (Xu et al., 2021), and Form Parser, which 

extracts form elements such as text and checkboxes 

(Powalski et al., 2021). The purpose was to discover one 

answer for many legal issues. It also tested an Invoice 

Parser, revealing its flaws with both tables and words 

(Appalaraju et al., 2021), as well as a Utility Parser, which 

extracts more than 30 fields from Utility statements: 

amount, line items, etc., and an Expense Parser, which 

extracts from Receipts, including supplier, total amount, 

tip, etc.. A step occurred before testing, which involved 

copying the actual environment. The first idea was 

straightforward: placing documents in the GCP cloud 

store, utilizing Document AI with a simple API call, and 

then enhancing the knowledge base for the RAG setup. 

Tests on files of different sizes brought out a limitation 

of 15 pages for Form Parser as well as quotas of 6 

requests per minute per processor being used. To verify 

these constraints, a performance analysis was done 

whose results are captured in tables and measurement 

logs. 

The architecture for asynchronous processing was based 

on batch processing via LRO. Documents got chopped up 

to the max limits of DocAI (100 pages, 1GB per chunk). 

For even more reliability, add yet another pre-

sanitization pipeline for files with qpdf, Ghostscript, and 

pdf-cpu. This will standardize and repair corrupted PDFs, 

hence minimizing errors on the Document AI side. 

The last stage constituted the design and testing of a 

personalized pool of processors (ProcessorPool) that 

would allow for parallel calling of the same synchronous 

Document AI API thus bypassing the low performance 

realized from batchProcessDocuments natively. 

ProcessorPool distributed page processing across 

numerous pre-created Form Processor instances, while 

respecting quotas and gRPC-channel constraints. This 

enabled comparison of native and custom approaches 

and a quantitative estimate of the acceleration achieved 

(up to a tenfold reduction in time). 

Results and Discussion 

The system’s central concept is that users upload a 

collection of documents that the system must analyze to 

build a RAG knowledge base. The majority of files are 
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PDFs, which are essentially containers of scanned 

images of pages. This disables any simple text extraction 

and hence necessitates optical character recognition (He 

& Schomaker, 2017). Google Document AI is making a 

full implementation available at the low end, abstracting 

from the developer all low-level, fiddly details. This 

includes content-type detection (text versus image 

content), segment dispatching to OCR, and then 

processing and merging results. 

The service provides various specialized “processors.” 

For this study, three core types were considered: OCR 

Processor, an enhanced version of standard OCR 

augmented with Google models and supporting image 

formats and PDF; Layout Parser Processor, intended for 

documents with clear structure, such as DOCX or XLSX, 

extracting layout elements (text, tables, lists) (Xu et al., 

2021); and Form Parser, the primary processor chosen 

for implementation, optimized for documents 

containing forms (medical bills, questionnaires, reports), 

yet also demonstrating high effectiveness on ordinary 

scanned letters and textual documents (Powalski et al., 

2021). 

Empirical tests have proven that more specialized 

processors, namely the Invoice Parser, Utility Parser, 

and Expense Parser, do not supersede the Form Parser 

in terms of universality and accuracy even on domain-

specific documents. For example, it may completely miss 

table columns or line breaks (Appalaraju et al., 2021). 

The Form Parser yielded more completeness and 

accuracy of extraction because textual blocks, for 

example, physicians’ summaries, are never omitted, and 

also recognizes table structure correctly. Hence, the 

Form Parser was selected as a universal instrument for 

most incoming documents. 

The initial working hypothesis envisioned a linear, 

straightforward workflow. The client application would 

upload documents to GCP cloud storage via a pre-signed 

URL and then dispatch a request to the server to process 

them. The server, in turn, would invoke Document AI, 

await the result, enrich the RAG system with the output 

(create vectors and persist them in the database), and 

notify the client upon completion. 

The initial implementation followed this plan and 

consisted of two API endpoints: one to generate the 

upload link and the other to initiate processing. It 

worked well with small files (1-10 pages), but when a 22-

page document was tried, it hit against very rigid 

limitations of the synchronous Document AI API: File size 

must not exceed 40 MB, and page count, as shown in 

Table 1, is capped at 15. 

 

Table 1. Performance and Constraints of the Form Parser (compiled by author) 

 

Pages per 

document 

 

15 pages 

 

Form Parser 

processor limits 

 

You can raise this to 30 pages by setting 

imageless_mode = true in the ProcessRequest 

payload. 

 

Image 

resolution 

40 

megapixels 

per page 

 

Content limits 

 

Applies only to image files; PDFs are exempt. 

 

Requests per 

minute 

 

6 req/min 

 

“Online process 

requests per 

minute (single 

region)” quota 

 

This bucket is per project × processor type. All 

Form Parsers you create in the same region 

share the same 6-RPM allowance. 
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Global API 

ceiling 

 

1,800 

req/min per 

user 

 

General Document 

AI quota 

 

Rarely is the bottleneck, but it applies across all 

Document AI methods you call from that user 

in the project. 

 

As a temporary measure, a utility was implemented to split documents into chunks, process them sequentially, 

and then merge the results

Nevertheless, this approach proved untenable for large 

files typical of medical documentation (e.g., 700 MB and 

1,600 pages). First, the long wait times (over 30 minutes) 

triggered timeouts in the browser or network 

infrastructure. Second, the user experience (UX) was 

severely degraded, as users had to remain on the page, 

awaiting completion, which increased the risk of churn. 

Third, processing errors sporadically arose due to PDF 

integrity issues. 

To address long waits, the system migrated to the 

asynchronous batch processing provided by Google 

Document AI. This mechanism operates similarly to the 

synchronous path but enforces different limits and uses 

a distinct API grounded in long-running operations 

(LRO). The architecture was modified: after file upload, 

the client initiated processing and subsequently polled 

the server for status at intervals, freeing users from 

having to wait on an active tab. The server started a 

batch job in Document AI. When checking on its 

progress, it looked at the LRO state. 

Batch-processing limits go much higher: up to 1 GB per 

chunk and up to 100 pages. The system was enhanced 

to split large documents into manageable chunks, 

adhering to these limits. This solution not only 

successfully handled large files but also improved user 

experience. However, real-world data stress tests 

revealed new issues, both in terms of instability with 

specific files and general performance, which motivated 

an architectural redesign at a more fundamental level. 

It has been observed that a large percentage of PDFs 

uploaded by users are damaged or not standard-

compliant, most likely due to multiple conversions and 

the use of low-quality tools for scanning/merging. In 

such cases, Document AI throws back an error of file 

corruption or invalid format. It has also been empirically 

noticed that though the 100-page limit is not crossed 

more than 50 pages in a chunk mostly fails, the same 

document split into 20-page chunks succeeds. 

The solution, therefore, was to set up a pre-processing 

and PDF “sanitization” pipeline before dispatching data 

to Document AI. The open-source command-line 

toolchain used included qpdf, Ghostscript (gs), pdf-cpu, 

mutool, and pdfseparate. Among the features that those 

tools offer are validation and repair, check file structure 

and fix errors in it; optimization and compression, make 

the file smaller without losing any quality; PDF version 

updates, take legacy documents up to what has become 

a modern standard, so there’s improved compatibility; 

decryption, removal of protection from encrypted 

documents. 

A multi-tier fallback mechanism was developed, 

whereby the system attempts to process the file using 

different utilities at various tiers, as shown in Figure 1. 
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Fig. 1. Repair PDF code sample (compiled by author) 

This stage ensured that only valid, decrypted, and 

standardized files were sent to Document AI, which 

significantly increased the overall reliability of the 

system. Previously, it was highlighted that there was a 

basic flaw. The client application still had to be 

responsible for some part of the logic (status polling). 

Without queues, load management could not be 

properly handled when many users were uploading files 

at once. This necessitated a fully event-driven 

architecture. 

The new architecture cleanly separates responsibilities 

among system components. The client (front end) 

merely requests a pre-signed URL and uploads the file to 

cloud storage; its role then concludes. The messaging 

layer (Pub/Sub) automatically triggers an event after a 

successful upload, such that it gets published to a topic. 

The Upload Handler (which is a microservice listening to 

this topic) will create a document record inside the 

database (storing the file path, user id, and case id), set 

some initial status, and then dispatch a task into the next 

service’s queue. The Document Worker prepares and 

processes files inside Document AI. PDF sanitization, 

chunking, and recognition are performed, then update 

the status inside the database and send the extracted 

text to the next queue. The LLM Worker gets already 

processed text from a queue split in accordance with 

token limits. It gets classified by any fast model for 

example flash-2.0 synopsis generation with a primary 

model vector embeddings built using the text-

embedding-004 model Genkit AI then stored inside 

PostgreSQL with pgvector extension for further usage 

inside the RAG system. 
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This setup makes sure that elements are loosely joined, 

making it easy to work on and keep up with each part. 

The plan with lines (Cloud Tasks) and Pub/Sub provides 

a robust system that can handle the most load, as it 

brings additional service units in Cloud Run when 

needed. Even after setting the building right, the speed 

problem stayed. The native async batch API from Google 

turned out to be shockingly slow. Processing a large 

document (1,600 pages, 700 MB) took about 50 

minutes, and this was sometimes only to obtain an error 

response about the source file. Meanwhile, processing a 

100-page document via a custom implementation with 

sequential synchronous API calls took 1–2 minutes. 

Extrapolating this result (16 × 2 minutes + 20% margin) 

yielded an estimate of 39 minutes, already faster than 

the native solution. 

This led to the hypothesis that a faster batch-processing 

system could be built by parallelizing the fast 

synchronous API calls (Li et al., 2022). To that end, a key 

component, ProcessorPool, was developed. Essentially a 

custom load balancer, it manages a pool of several (e.g., 

20) pre-created Form Processor instances in Document 

AI. 

The ProcessorPool’s operating principle, shown in Figure 

2, is that the pool maintains a list of available processor 

IDs and tracks the current load on each, honoring the 

synchronous API constraint of no more than six requests 

per minute per processor. When handling a large 

document, it is first split into individual pages. The pool 

then distributes page-processing tasks to the least-

loaded processors, ensuring that limits are not 

exceeded. Execution proceeds in parallel using pLimit: 

the main thread does not block waiting for each page 

but awaits completion of all promises at the top level. A 

retry policy is applied to pages whose processing failed. 

The system operates a shared pool for all documents 

uploaded concurrently and processes them on a FIFO 

basis.  

 

Fig. 2. ProcessorPool Sequence (compiled by author) 
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A critical technical nuance involved the payload-size 

limit of the gRPC channel used by the Document AI SDK. 

Despite the API’s declared 40 MB limit, the gRPC channel 

cannot transmit more than 4 MB. Therefore, pages 

exceeding ~3.5 MB (base64) are uploaded to temporary 

storage before processing, and a link is passed to 

Document AI. 

Introducing the ProcessorPool enabled a tenfold 

acceleration on some documents. For example, the end-

to-end processing time for a 1,000-page document 

(including sanitization, recognition, and RAG creation) 

fell to 12 minutes. Moreover, this approach provided 

granular control, enabling the precise identification and 

debugging of issues at the page level. 

Conclusion 

The normal ways to use Google Document AI that the 

documentation suggests are not good for making a 

system that works well and is reliable when dealing with 

actual legal papers. Problems in practice- faulty PDFs 

and poor results from the native batch API caused the 

need for a complete multi-stage fix. 

The design produced a microservices architecture, 

message queues, and a presanitization pipeline that 

could deliver the level of fault tolerance and scalability 

aimed for. ProcessorPool can do synchronous API calls in 

parallel, which beats the so-named state-of-the-art 

asynchronous method today by up to 10x in processing 

time. What this means is essentially instant, reliable 

conversion-at-scale from arbitrary volumes of 

heterogeneous documentation into structured data 

ready for analysis by LLMs. Future work will involve 

training and tuning Document AI processors to achieve 

better recognition accuracy and efficiency for specific 

document types. 

Quotas and limits related to Google Document AI   work. 

In synchronous (online) processing, major quotas 

include a 15-page document limit and a 6 requests per 

minute per processor type in a region. For batch 

processing, the limits are higher: up to 5 concurrent 

requests per processor, up to 10,000 pages in active 

processing per project, and up to 100 pages per 

document for the Form Parser. 

Cost is a significant factor. The Form Parser rate is $30 

per 1,000 processed pages. Cost analysis during testing 

revealed that processing a standard multi-page medical 

document can cost up to $45. This aspect requires 

careful consideration when shaping the product’s 

economic model. 

Beyond API limitations, other technical challenges were 

uncovered. The constrained resources of Cloud Run 

(maximum 8 vCPU and 32 GB RAM) demand careful 

balancing of parallel processes to avoid out-of-memory 

errors; an optimal configuration for a single instance 

proved to be 25 parallel operations. Service timeouts 

also matter: Cloud Tasks is limited to 1,800 seconds (30 

minutes), so jobs that may run longer are best moved to 

Cloud Run Jobs, where the timeout extends to 7 days. 

Additionally, sporadic connectivity issues were observed 

between one service and the Cloud PostgreSQL 

database, which were resolved by fine-tuning the 

connection parameters. 
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