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Abstract: This article presents a comprehensive analysis 

of integrated data validation strategies in clinical 

systems, aimed at enhancing their quality and 

regulatory compliance. The study employs an 

interdisciplinary approach that combines risk-based 

quality management, data model standardization, and 

multi-level assessment procedures, including DQA and 

SSDQA, with a focus on their reproducibility and 

scalability. Particular attention is given to a comparative 

analysis of the operational efficiency of direct data entry 

and automated transfer from medical information 

systems, with a detailed evaluation of their impact on 

data preparation speed, metric reproducibility, 

reduction of transcription errors, and monitoring 

workload. Key factors determining validation 

effectiveness have been identified, including trial 

portfolio size, maturity of digital infrastructure, 

personnel readiness, and regional implementation 

specifics. Quantitative indicators of RBQM adoption and 

related tools, as well as data fitness-for-use metrics 

obtained from multicenter projects with varying levels 

of quality control maturity, are presented. The optimal 

validation architecture is defined as incorporating 

unified standards, continuous control during the 

execution stage, and adaptation of tools to local 

conditions to minimize risks. The article will be useful for 

clinical research professionals, data quality 

management system developers, regulatory experts, 

healthcare IT architects, and researchers in the field of 

digital transformation of medical technologies. 
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quality management, risk-based monitoring, eSource 

technologies, data standardization. 

Introduction 

Clinical systems are undergoing a shift toward 

integrating risk-based quality management (RBQM), 

quality tolerance limits and central statistical monitoring 

(QTL/CSM), direct data capture (DDC), and automated 

EHR-to-EDC flows (EHR2EDC) on top of multi-level data 

quality assessment procedures (DQA/SSDQA) to 

simultaneously improve validity and regulatory 

compliance. Remote oversight plays the leading role in 

this transition. Risk-based central monitoring is 

positioned as a key mechanism for ensuring data 

integrity and participant safety under constraints on on-

site supervision [1]. 

Large-scale empirical evaluations of central statistical 

monitoring across thousands of observations confirm its 

value as an instrument for early detection of systematic 

anomalies and inter-site variability [5]. At the quality-

policy level, the formal QTL framework describes the 

selection of critical parameters, justification of 

thresholds, and action plans for excursions, thereby 

embedding risk management into the study life cycle [2]. 

Confidence in real-world evidence (RWE) depends 

directly on standardized quality assessment and source 

transparency, which requires reproducible procedures 

and explicit acceptability criteria [3]. 

The empirical base for integration is heterogeneous and 

reveals maturity gaps. RBQM adoption remains 

fragmented. The consolidated implementation level 

across components is about 57%, with considerable 

variation by stage and study portfolios [6]. At the same 

time, data-model standardization shows institutional 

maturity. Transformation to OMOP-CDM covers roughly 

12% of electronic medical records, 453 databases, and 

more than 928 million unique patients in 41 countries, 

creating a foundation for unified governance and 

distributed analytics anchored in FAIR/CARE and the 

Five Safes [7]. 

Statistical implementation of QTL includes SPC control 

charts, beta-binomial, and Bayesian hierarchical 

approaches. Practice permits one-sided limits and 

recommends initiating monitoring after about 30 

participants have been enrolled to reduce false alarms 

[8]. The EHR DQA landscape is characterized by the 

predominance of completeness checks and a substantial 

share of correctness, consistency, timeliness, and 

plausibility assessments. Additional dimensions—

conformance and bias—are distinguished, indicating a 

shift toward structural-conformance checks and 

identification of systematic distortions [9]. 

The aim is to analyze integrated validation strategies for 

clinical systems by synthesizing standardized, multi-level 

DQA/SSDQA procedures with risk-oriented mechanisms 

and operational approaches based on eSource 

technologies, drawing on published qualitative and 

quantitative indicators to identify reproducible 

elements of a quality architecture and zones of 

maximum implementation effect. 

Materials and Methods 

The methodological foundation of this study is formed 

at the intersection of risk-based quality management, 

clinical data standardization and verification 

procedures, and electronic modes of primary data 

capture and transfer. As the basic organizational anchor, 

we used a body of evidence on the actual level of RBQM 

adoption and key sponsor- and site-side barriers, which 

defined the contours of integration and expectations 

around managerial risks, as shown by Dirks [6]. 

 Data-handling rules were organized around a unified 

model of clinical information and agreed principles of 

access, protection, and reuse. As reviewed by Hallinan 

[7], applying the OMOP model in combination with the 

principles of findability, accessibility, interoperability, 

and reusability, alongside collective-responsibility 

guidelines and the Five Safes, provides a unified 

interpretation of entities, local record storage, and 

exchange of de-identified aggregates only. 

To design acceptable quality limits and a mechanism for 

early detection of systematic failures, a suite of 

statistical procedures was adopted: one-sided 

thresholds; observed–expected and observed-to-

expected control graphs; cumulative proportions; 

Bayesian schemes ranging from beta-binomial to 

hierarchical models. Serial control is advisable once 

approximately thirty observations have accrued to 

reduce the likelihood of early-phase false alarms, as 

systematized by Kilaru [8]. Constructive descriptions of 

fields, expected values, and actions for limit excursions 

were based on the applied framework proposed by 

Bhagat [2]. 

The basic data quality verification layer was structured 

along five traditional dimensions—completeness, 

correctness, consistency, plausibility, and timeliness—
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with the addition of model conformance and systematic 

bias. For each dimension we used element matching, 

presence checks, comparisons with external sources, 

distributional analyses, and audit-log review of entry 

practices, as summarized by Lewis [9]. Above this layer 

sits the “fitness for purpose” contour, where verification 

is tied to a study’s target variables, implemented in two 

rounds—first on aggregated results, then on row-level 

data—and accompanied by prioritization of detected 

issues and targeted feedback to sites, as shown by 

Razzaghi [11]. 

The observation contour is complemented by 

centralized statistical monitoring to flag sites and 

periods with atypical profiles and to route signals into 

the risk-management cycle, as examined by de Viron [5]. 

Under constraints on on-site activity, remote forms of 

centralized monitoring were used with re-focusing as 

the risk profile changed, as shown by Afroz [1]. Finally, 

requirements for data provenance transparency and 

reporting reproducibility were integrated into the 

methodology as a necessary condition for trust in 

observational findings, as emphasized by Blacketer [3]. 

Results 

To fix the “starting conditions” for integrated validation, 

current utilization levels of RBQM components and 

related tools were compared across life-cycle stages, 

portfolio scale, and regions. Table 1 presents 

consolidated indicators derived from a multi-center 

survey of sponsor companies and contract research 

organizations. 

Table 1 – RBQM adoption (components/tools) by subgroup (Compiled by the author based on source [6]) 

Metric Planning & 

Design 

Execution Documentat

ion 

Total 

(componen

ts) 

Tools 

(overall) 

All companies 56 52 60 57 46 

Annual trial volume 

<25 

47 41 57 48 31 

25–100 62 54 62 59 43 

≥100 59 63 62 63 50 

Europe 64 59 69 64 43 

North America 53 50 57 54 41 

Rest of the world 42 43 52 45 32 

Across all companies, stage imbalance is evident: RBQM 

component use is higher at the documentation stage 

(60%) compared with planning (56%) and especially 

execution (52%), while overall tool use is 46%. This 

configuration indicates a tilt toward post hoc procedures 

and substantiates the need to strengthen risk control 

during active data collection and monitoring, when 

initial deviations in quality-critical parameters emerge. 

Portfolio size is a systemic differentiator. With fewer 

than 25 studies, total RBQM component use is 48% 

versus 59% for 25–100 and 63% for ≥100; the tools gap 

reaches 19 percentage points between the extremes 

(31% versus 50%). The sharpest lag among small 

organizations is at execution (41% versus 63% in the 

largest group), pointing to limited maturity of 

operational control contours and a deficit of tooling at 

the point where rapid risk response is required [6]. 

Regional differences are consistent across stages. 

European samples show higher RBQM component 

adoption—64% overall versus 54% in North America and 
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45% elsewhere; similar advantages appear in planning 

(64% vs 53% and 42%), execution (59% vs 50% and 43%), 

and documentation (69% vs 57% and 52%). Tool use is 

also higher in Europe (43%) than in North America (41%) 

and the rest of the world (32%), which provides a 

benchmark for adapting practices in jurisdictions with 

lower values [6]. 

In sum, the slices presented support three directions 

relevant to integrated validation. Effort must pivot from 

the “back-end” documentation contour to continuous 

support during execution, where risk concentration is 

maximal. Strategy should account for resource 

constraints in small portfolios and provide for phased 

tooling ramp-up without loss of methodological 

integrity. When transferring solutions across regions, 

explicit tuning to infrastructural and regulatory contexts 

is required, as differences are structural rather than 

incidental. 

Evaluation of digital data sources in clinical systems 

showed clear differences between direct entry into the 

electronic case report form and automated transfer 

from the clinical information system. As shown by 

Yaegashi [12], direct entry shortens the time to final 

status by several days and reduces the time burden of 

on-site monitoring due to simplified source-data 

reconciliation. In addition, Mueller [10] reports that 

automated transfer from the medical system to the data 

collection system enables regular synchronization and 

partially closes the gap between routine practice and 

research variable requirements. Table 2 summarizes 

metrics for both approaches, reflecting the share of 

fields, speed to final status, monitoring burden, and the 

volume of automatically transferable variables. 

 

Table 2 – Key eSource metrics (DDC and EHR2EDC) (Compiled by the author based on sources [10,12]) 

Metric Value 

Share of DDC fields across sites 61.9–84.5% 

Same-day entry 76% DDC vs 72% non-DDC (median = 0 days in 

both) 

Event → finalization (median) 24 DDC vs 28 non-DDC days 

Entry → finalization (median) 22 DDC vs 27 non-DDC days 

CRA visit duration 43 vs 52 min/visit (−9 min) 

Time saving per subject ≈8.6 hours (57 visits × 9 min) 

Effort break-even threshold 2–13 subjects/site 

Auto-transferable variables (EHR2EDC) 67 of 274 (24% of all; 36% of eligible) 

These values show that direct case-form entry confers 

an advantage specifically on the “entry–finalization” 

segment: the five-day median reduction indicates fewer 

review iterations and elimination of manual 

transcription, whereas the moment of initial entry 

remains synchronized to the clinical event in both 

groups. The nine-minute reduction in monitor-visit 

duration accumulates across repeated visits; at 57 visits, 

the saving reaches roughly 8.6 hours per participant, 

directly affecting on-site workload and monitoring 

resource planning [12]. The effort break-even threshold 

ranges from two to thirteen participants per site and 

depends on the share of fields entered directly into the 

case form, which requires design-time tuning of forms 

and documentation roles during site preparation [3]. 

Automated transfer from the clinical system to the data 
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collection system exhibits a different efficiency profile: a 

strictly bounded yet stable pool of automatically 

transferable variables (67 of 274; 24% of all fields and 

36% of those deemed eligible) with daily 

synchronization establishes a repeatable data flow 

without manual copying and ensures traceability via 

predefined mapping and security rules [10]. This contour 

requires regulated interfaces and dictionaries and relies 

on access-governance procedures and role alignment 

within clinical practice. 

A comparison of approaches shows that direct entry 

scales gains by shortening the review–correction cycle—

especially when a high share of fields is assigned to the 

coordinator—whereas automated transfer strengthens 

repeatability for a tightly defined subset of variables and 

reduces transcription risk in operational systems [4]. The 

sustainability of both approaches requires uniform 

schemas and governance policies, as confirmed by 

findings on the importance of a unified data model and 

responsible-access principles in integrated clinical data 

management [7]. At the quality-control level, adding a 

data quality layer with fixed dimensions—completeness, 

correctness, consistency, plausibility, timeliness, 

structural conformance, and systematic bias—enables 

early identification of vulnerabilities in direct-entry and 

auto-transfer flows [9]. In addition, fitness-for-purpose 

procedures identify and document anomalies affecting 

endpoint calculations and support prioritization of fixes 

by analytical impact [11]. Site readiness for digital-

source deployment and practices for initial 

infrastructure setup remain necessary conditions for 

achieving these metrics and call for formal change 

management at start-up. 

Discussion 

The starting point for integration is unifying structures 

and access rules. According to Hallinan [7], broad 

implementation of a common OMOP-CDM (about 12% 

of electronic records, 453 databases, over 928 million 

patients in 41 countries), coupled with FAIR/CARE and 

the Five Safes, creates a reproducible basis for quality 

checks and secure distributed analytics. This foundation 

enables subsequent layered validation, where unified 

vocabularies and structures lower the risk of 

discrepancies during data transfer and reconciliation. 

The next layer is quality assessment. Lewis [9] shows 

that publications most often test completeness (74% of 

studies), with growing attention to structural 

conformance and systematic bias; this shift reflects the 

need to control format/structural errors and identify 

non-random missingness distortions. At the study level, 

extended SSDQA can surface and close analysis-critical 

gaps before statistical computations. Razzaghi [11] 

demonstrates two sequential verification rounds with 

prioritized issue tracking and traceable quality 

improvements at sites. The integrated scheme then 

incorporates quality limits and central statistical control. 

As shown by Kilaru [8], quality limits are tuned using 

statistical control charts and beta-binomial and 

hierarchical Bayesian models. One-sided bounds and 

initiation of operational monitoring after roughly thirty 

participants are justified to enhance sensitivity to 

systematic shifts at an acceptable false-alarm rate. De 

Viron [5] reviews scaling of central statistical monitoring 

to large collections of sites, confirming applicability in 

multi-site programs. Afroz [1] shows that remote 

centralized monitoring practices were successfully 

employed under constraints, supporting the case for a 

persistent remote-control contour. 

Completing the chain is the operational layer of digital 

sources. Yaegashi [12] shows that direct entry into eCRFs 

accelerates time to final status and reduces on-site 

monitoring burden, with effects accumulating with the 

number of visits. Mueller [10] shows that automated 

clinical-to-EDC transfer eliminates double entry for 

standardizable variables and ensures regular 

synchronization via defined mappings, complementing 

direct entry and enhancing reproducibility for a fixed 

subset of measures. Finally, Dirks [6] shows that RBQM 

implementation remains uneven by region and portfolio 

scale, setting the “starting conditions” for integrating 

the components above and requiring stepwise practice 

alignment. Table 3 presents the outcomes of two-round 

data fitness checks in a multi-center study, illustrating 

how the SSDQA layer operationalizes the results of prior 

standardization. 

Table 3 – Two-round SSDQA results in PRESERVE (Compiled by the author based on source [11]) 

Parameter DQ1 (aggregated, distributed) DQ2 (row-level, centralized) 
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Number of checks 79 65 

Issues identified 115 157 

Priority distribution Urgent 9%; High 23%; Medium 23%; 

Low 45% 

Urgent 5%; High 46%; Medium 47%; 

Low 2% 

Resolved / improved 50% issues (ETL corrections, 

additional data) 

34% improvements at sites; 

substantial share due to source-data 

specifics (~38%) 

Typical themes Eligibility criteria, missing key 

variables, and code-use variability 

Heterogeneity of clinical 

values/trajectories, event-sequence 

anomalies, and geodata 

These results show that distributed, aggregate-level 

checks rapidly capture critical breaks in eligibility and 

key variables, while subsequent row-level work reveals 

subtler anomalies in values and event sequences—

thereby influencing refinements to outcome and 

covariate definitions. Such “stepped” problem 

revelation justifies introducing quality limits and central 

statistical checks and indicates where digital operational 

flows—direct entry and automated transfer—will yield 

the greatest gains once structures and access rules have 

been unified. 

Interpreting the results requires accounting for source 

applicability and context differences. The works by Afroz 

[1], Bhagat [2], Blacketer [3], Cramer [4], and de Viron 

[5] serve as conceptual anchors for centralized control, 

quality tolerance limits, trust in real-world data, and 

eSource start-up practices, but lack quantitative detail, 

limiting direct cross-approach comparisons. 

eSource portability is heterogeneous because examples 

come from different jurisdictions and regulatory 

contours. In the German auto-transfer case, daily 

synchronization and 67 automatically transferable 

variables (24% of all fields and 36% of those eligible) are 

shown [10]. In the Japanese direct-entry study, time to 

final status is accelerated by four–five days, monitor visit 

duration is reduced by nine minutes, and labor break-

even thresholds are estimated at two–thirteen subjects 

given a 61.9–84.5% direct-entry field share [12]. 

Some discrepancies originate at the source and are not 

resolved by extraction/transformation adjustments 

alone. Changes to the analysis plan and clarification of 

variable definitions are required, as shown in the two-

stage data-fitness review in the multi-center project 

[11]. Meanwhile, the DQA review highlights the absence 

of a universally accepted standard amid ongoing 

automation and expansion of measurement 

dimensions, including structural conformance and 

systematic bias [9]. Unification based on a shared data 

model and responsible information principles reduces 

variability but does not eliminate gaps [7]. 

Methodological boundaries are also evident in tuning 

limit controls and central statistical surveillance. Limit 

methods differ in effectiveness, and initiating 

operational monitoring is advisable after about thirty 

participants [8]. The multi-level heterogeneity of RBQM 

adoption by region and portfolio scale sets different 

starting positions for integrating standardization, quality 

checks, threshold limits, and digital sources. 

Conclusion 

This study confirms the critical role of integrated 

validation strategies as the basis for sustainable clinical 

data quality management. The greatest effect is 

achieved when a standardized data model, multi-level 

quality assessment procedures, and risk-oriented 

operational controls are connected sequentially, 

minimizing the likelihood of systematic and random 

distortions early in the study life cycle. 

The optimal validation configuration shifts emphasis 

from post hoc documentation to continuous support 

during execution, when risk concentration is highest. In 

this context, digital sources—direct entry and 

automated transfer—provide complementary effects: 



The American Journal of Engineering and Technology 305 https://www.theamericanjournals.com/index.php/tajet 

The American Journal of Engineering and Technology 
 

 

the former shortens the review–correction cycle; the 

latter enhances reproducibility and lowers transcription 

burden. The effectiveness of each approach is 

determined by the share of covered fields, 

infrastructure maturity, and role distribution among 

process participants. 

Adapting tools to portfolio scale and regional contexts is 

especially important. Differences in RBQM maturity and 

digital infrastructure availability require tailoring the 

validation architecture to specific regulatory and 

operational conditions. Phased implementation, 

beginning with priority elements, enables managed 

efficiency gains without loss of methodological integrity. 

Accordingly, sustainable development of integrated 

validation strategies requires a unified methodological 

base, a combination of operational flexibility and 

technological standardization, and institutional 

readiness for inter-site and inter-regional 

harmonization. Future research should focus on forming 

universal effectiveness metrics, refining mechanisms for 

automating data-fitness assessment, and integrating 

validation procedures into end-to-end risk management 

systems for clinical research. 
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